Ramanujan’s approximation to the exponential function and generalizations

被引:0
作者
Cormac O’Sullivan
机构
[1] The CUNY Graduate Center,Department of Mathematics
来源
The Ramanujan Journal | 2023年 / 62卷
关键词
Exponential function; Gamma function; Saddle-point method; Exponential integral; 33B10; 30E15;
D O I
暂无
中图分类号
学科分类号
摘要
Ramanujan’s approximation to the exponential function is reexamined with the help of Perron’s saddle-point method. This allows for a wide generalization that includes the results of Buckholtz, and where all the asymptotic expansion coefficients may be given in closed form. Ramanujan’s approximation to the exponential integral is treated similarly.
引用
收藏
页码:649 / 673
页数:24
相关论文
共 17 条
[1]  
Brassesco S(2011)The asymptotic expansion for Ramanujan J. 24 219-234
[2]  
Méndez MA(1963) and the Lagrange inversion formula Proc. Am. Math. Soc. 14 564-568
[3]  
Buckholtz JD(1965)Concerning an approximation of Copson Proc. Am. Math. Soc. 16 248-252
[4]  
Carlitz L(1995)The coefficients in an asymptotic expansion J. Comput. Appl. Math. 58 103-116
[5]  
Flajolet P(1978)On Ramanujan’s J. Comb. Theory Ser. A 24 24-33
[6]  
Grabner PJ(1986)-function J. Stat. Comput. Simul. 24 163-168
[7]  
Kirschenhofer P(2019)Stirling polynomials Pac. J. Math. 298 157-199
[8]  
Prodinger H(2022)The incomplete gamma function and Ramanujan’s rational approximation to Expo. Math. 40 870-893
[9]  
Gessel I(1992)Revisiting the saddle-point method of Perron Proc. Am. Math. Soc. 114 909-918
[10]  
Stanley RP(1924)De Moivre and Bell polynomials Sitzungsber Berliner Math. Gesellschaft 23 50-64