K*-Metrizable spaces and their applications

被引:11
|
作者
Banakh T.O. [1 ]
Bogachev V.I. [2 ]
Kolesnikov A.V. [3 ]
机构
[1] Moscow State University, Moscow
[2] Moscow Aviation Institute, Moscow
关键词
Topological Space; Compact Subset; Convex Space; Convergent Sequence; Metrizable Space;
D O I
10.1007/s10958-008-9231-z
中图分类号
学科分类号
摘要
In this paper, we introduce and study a new class of generalized metric spaces, which we call k*-metrizable spaces, and suggest various applications of such spaces in topological algebra, functional analysis, and measure theory. By definition, a Hausdorff topological space X is k*-metrizable if X is the image of a metrizable space M under a continuous map f: M → X which has a section s: X → M preserving precompact sets in the sense that the image s(K) of any compact set K ⊂X has compact closure in X. © 2008 Springer Science+Business Media, Inc.
引用
收藏
页码:475 / 522
页数:47
相关论文
共 50 条
  • [1] Metrizable and weakly metrizable coset spaces
    Ling, Xuewei
    Lin, Shou
    He, Wei
    TOPOLOGY AND ITS APPLICATIONS, 2021, 291
  • [2] The Levy-Steinitz rearrangement theorem for duals of metrizable spaces
    José Bonet
    Andreas Defant
    Israel Journal of Mathematics, 2000, 117 : 131 - 156
  • [3] Essential complexity of metrizable spaces
    Ding, Longyun
    Li, Jiaming
    Peng, Cheng
    TOPOLOGY AND ITS APPLICATIONS, 2021, 301
  • [4] Functions of the first Baire class with values in metrizable spaces
    Karlova O.O.
    Mykhailyuk V.V.
    Ukrainian Mathematical Journal, 2006, 58 (4) : 640 - 644
  • [5] The natural mappings in and k-subspaces of free topological groups on metrizable spaces
    Yamada, K
    TOPOLOGY AND ITS APPLICATIONS, 2005, 146 : 239 - 251
  • [6] Condensations onto connected metrizable spaces
    Druzhinina, I
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (03): : 751 - 766
  • [7] omega-JOINTLY METRIZABLE SPACES
    Al Shumrani, M. A.
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2016, 28 (01) : 25 - 30
  • [8] Continuous maps of products of metrizable spaces
    Sichler, J
    Trnková, V
    HOUSTON JOURNAL OF MATHEMATICS, 2000, 26 (03): : 417 - 450
  • [9] Uniform Eberlein compactifications of metrizable spaces
    Banakh, Taras
    Leiderman, Arkady
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (07) : 1691 - 1694
  • [10] AN EXAMPLE IN THE DIMENSION THEORY OF METRIZABLE-SPACES
    KULESZA, J
    TOPOLOGY AND ITS APPLICATIONS, 1990, 35 (2-3) : 109 - 120