Geometric Hitting Set for Segments of Few Orientations

被引:0
|
作者
Sándor P. Fekete
Kan Huang
Joseph S. B. Mitchell
Ojas Parekh
Cynthia A. Phillips
机构
[1] TU Braunschweig,
[2] Stony Brook University,undefined
[3] Sandia National Labs,undefined
来源
Theory of Computing Systems | 2018年 / 62卷
关键词
Set cover; Hitting set; Approximation algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
We study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the “hitting points”). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. We give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.
引用
收藏
页码:268 / 303
页数:35
相关论文
共 50 条
  • [31] An Efficient Branch-and-Bound Solver for Hitting Set
    Blaesius, Thomas
    Friedrich, Tobias
    Stangl, David
    Weyand, Christopher
    2022 PROCEEDINGS OF THE SYMPOSIUM ON ALGORITHM ENGINEERING AND EXPERIMENTS, ALENEX, 2022, : 209 - 220
  • [32] Sharp Concentration of Hitting Size for Random Set Systems
    Jamieson, Jessie D.
    Godbole, Anant
    Jamieson, William
    Petito, Lucia
    GRAPHS AND COMBINATORICS, 2015, 31 (03) : 639 - 648
  • [33] Smaller kernels for hitting set problems of constant arity
    Nishimura, N
    Ragde, P
    Thilikos, DM
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2004, 3162 : 121 - 126
  • [34] Near-Linear Approximation Algorithms for Geometric Hitting Sets
    Agarwal, Pankaj K.
    Ezra, Esther
    Sharir, Micha
    ALGORITHMICA, 2012, 63 (1-2) : 1 - 25
  • [35] Near-Linear Approximation Algorithms for Geometric Hitting Sets
    Pankaj K. Agarwal
    Esther Ezra
    Micha Sharir
    Algorithmica, 2012, 63 : 1 - 25
  • [36] On the Set Multi-Cover Problem in Geometric Settings
    Chekuri, Chandra
    Clarkson, Kenneth L.
    Har-Peled, Sariel
    PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, : 341 - 350
  • [37] Guarding a set of line segments in the plane
    Brimkov, Valentin E.
    Leach, Andrew
    Mastroianni, Michael
    Wu, Jimmy
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (15) : 1313 - 1324
  • [38] Approximability issues of guarding a set of segments
    Brimkov, Valentin E.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (08) : 1653 - 1667
  • [39] Computing Hitting Set Kernels By AC0-Circuits
    Max Bannach
    Till Tantau
    Theory of Computing Systems, 2020, 64 : 374 - 399
  • [40] An approximation algorithm for submodular hitting set problem with linear penalties
    Du, Shaojing
    Gao, Suogang
    Hou, Bo
    Liu, Wen
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 40 (04) : 1065 - 1074