Geometric Hitting Set for Segments of Few Orientations

被引:0
|
作者
Sándor P. Fekete
Kan Huang
Joseph S. B. Mitchell
Ojas Parekh
Cynthia A. Phillips
机构
[1] TU Braunschweig,
[2] Stony Brook University,undefined
[3] Sandia National Labs,undefined
来源
Theory of Computing Systems | 2018年 / 62卷
关键词
Set cover; Hitting set; Approximation algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
We study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the “hitting points”). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. We give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.
引用
收藏
页码:268 / 303
页数:35
相关论文
共 50 条
  • [21] Dynamic Kernels for Hitting Sets and Set Packing
    Max Bannach
    Zacharias Heinrich
    Rüdiger Reischuk
    Till Tantau
    Algorithmica, 2022, 84 : 3459 - 3488
  • [22] Dynamic Kernels for Hitting Sets and Set Packing
    Bannach, Max
    Heinrich, Zacharias
    Reischuk, Ruediger
    Tantau, Till
    ALGORITHMICA, 2022, 84 (11) : 3459 - 3488
  • [23] Parameterizations of hitting set of bundles and inverse scope
    Damaschke, Peter
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (04) : 847 - 858
  • [24] A kernelization algorithm for d-Hitting Set
    Abu-Khzam, Faisal N.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2010, 76 (07) : 524 - 531
  • [25] On the Set Multicover Problem in Geometric Settings
    Chekuri, Chandra
    Clarkson, Kenneth L.
    Har-Peled, Sariel
    ACM TRANSACTIONS ON ALGORITHMS, 2012, 9 (01)
  • [26] Hitting Geometric Objects Online via Points in Zd
    De, Minati
    Singh, Satyam
    COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 537 - 548
  • [27] Quasi-polynomial Hitting-set for Set-depth-Δ Formulas
    Agrawal, Manindra
    Saha, Chandan
    Saxena, Nitin
    STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 321 - 330
  • [28] On explaining integer vectors by few homogeneous segments
    Bredereck, Robert
    Chen, Jiehua
    Hartung, Sepp
    Komusiewicz, Christian
    Niedermeier, Rolf
    Suchy, Ondrej
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2015, 81 (04) : 766 - 782
  • [29] Sharp Concentration of Hitting Size for Random Set Systems
    Jessie D. Jamieson
    Anant Godbole
    William Jamieson
    Lucia Petito
    Graphs and Combinatorics, 2015, 31 : 639 - 648
  • [30] Near-Linear Approximation Algorithms for Geometric Hitting Sets
    Agarwal, Pankaj K.
    Ezra, Esther
    Sharir, Micha
    PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, : 23 - 32