Nonexistence of two classes of generalized bent functions

被引:0
作者
Jianing Li
Yingpu Deng
机构
[1] Chinese Academy of Sciences,Key Laboratory of Mathematics Mechanization, NCMIS, Academy of Mathematics and Systems Science
[2] University of Chinese Academy of Sciences,undefined
来源
Designs, Codes and Cryptography | 2017年 / 85卷
关键词
Generalized bent functions; Cyclotomic fields; Prime ideal factorizations; Class groups; 11R04; 94A15;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain some new nonexistence results of generalized bent functions from Zqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^n_q$$\end{document} to Zq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_q$$\end{document} (called type [n, q]) in the case that there exist cyclotomic integers in Z[ζq]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {Z}}[\zeta _{q}]$$\end{document} with absolute value qn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{\frac{n}{2}}$$\end{document}. This result generalizes two previous nonexistence results [n,q]=[1,2×7]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[n,q]=[1,2\times 7]$$\end{document} of Pei (Lect Notes Pure Appl Math 141:165–172, 1993) and [3,2×23e]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[3,2\times 23^e]$$\end{document} of Jiang and Deng (Des Codes Cryptogr 75:375–385, 2015). We also remark that by using a same method one can get similar nonexistence results of GBFs from Z2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^n_2$$\end{document} to Zm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_m$$\end{document}.
引用
收藏
页码:471 / 482
页数:11
相关论文
共 34 条