Nonexistence of two classes of generalized bent functions

被引:0
|
作者
Jianing Li
Yingpu Deng
机构
[1] Chinese Academy of Sciences,Key Laboratory of Mathematics Mechanization, NCMIS, Academy of Mathematics and Systems Science
[2] University of Chinese Academy of Sciences,undefined
来源
Designs, Codes and Cryptography | 2017年 / 85卷
关键词
Generalized bent functions; Cyclotomic fields; Prime ideal factorizations; Class groups; 11R04; 94A15;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain some new nonexistence results of generalized bent functions from Zqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^n_q$$\end{document} to Zq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_q$$\end{document} (called type [n, q]) in the case that there exist cyclotomic integers in Z[ζq]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {Z}}[\zeta _{q}]$$\end{document} with absolute value qn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{\frac{n}{2}}$$\end{document}. This result generalizes two previous nonexistence results [n,q]=[1,2×7]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[n,q]=[1,2\times 7]$$\end{document} of Pei (Lect Notes Pure Appl Math 141:165–172, 1993) and [3,2×23e]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[3,2\times 23^e]$$\end{document} of Jiang and Deng (Des Codes Cryptogr 75:375–385, 2015). We also remark that by using a same method one can get similar nonexistence results of GBFs from Z2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^n_2$$\end{document} to Zm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_m$$\end{document}.
引用
收藏
页码:471 / 482
页数:11
相关论文
共 50 条
  • [1] Nonexistence of two classes of generalized bent functions
    Li, Jianing
    Deng, Yingpu
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 85 (03) : 471 - 482
  • [2] New Classes of Bent Functions and Generalized Bent Functions
    Kim, Sunghwan
    Gil, Gang-Mi
    No, Jong-Seon
    IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2004, E87-A (02) : 480 - 488
  • [3] New classes of bent functions and generalized bent functions
    Kim, S
    Gil, GM
    No, JS
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2004, E87A (02): : 480 - 488
  • [4] New results on nonexistence of generalized bent functions
    Yupeng Jiang
    Yingpu Deng
    Designs, Codes and Cryptography, 2015, 75 : 375 - 385
  • [5] New results on the nonexistence of generalized bent functions
    Feng, KQ
    Liu, FM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (11) : 3066 - 3071
  • [6] New results on nonexistence of generalized bent functions
    Jiang, Yupeng
    Deng, Yingpu
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 75 (03) : 375 - 385
  • [7] ON THE NONEXISTENCE of BENT FUNCTIONS
    Zhang, Yin
    Liu, Meicheng
    Lin, Dongdai
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2011, 22 (06) : 1431 - 1438
  • [8] Nonexistence of generalized bent functions and the quadratic norm form equations
    Lv, Chang
    Zhu, Yuqing
    DESIGNS CODES AND CRYPTOGRAPHY, 2025,
  • [9] The relationship between the nonexistence of generalized bent functions and diophantine equations
    Liu, Feng Mei
    Yue, Qin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (06) : 1173 - 1186
  • [10] The relationship between the nonexistence of generalized bent functions and diophantine equations
    Feng Mei Liu
    Qin Yue
    Acta Mathematica Sinica, English Series, 2011, 27 : 1173 - 1186