A classification of parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical

被引:0
作者
L. Hille
G. Röhrle
机构
[1] TU Chemnitz,Fakultät für Mathematik
[2] Universität Bielefeld,Fakultät für Mathematik
来源
Transformation Groups | 1999年 / 4卷
关键词
Finite Number; General Linear; Representation Theory; Classical Group; Topological Group;
D O I
暂无
中图分类号
学科分类号
摘要
LetG be a classical algebraic group defined over an algebraically closed field. We classify all instances when a parabolic subgroupP ofG acts on its unipotent radicalPu, or onpu, the Lie algebra ofPu, with only a finite number of orbits.
引用
收藏
页码:35 / 52
页数:17
相关论文
共 24 条
  • [1] Arnold V. I.(1974)Critical points of smooth functions Proc. of ICM, Vancouver 1 19-39
  • [2] Bongartz K.(1982)Covering spaces in representation theory Inv. Math. 65 331-378
  • [3] Gabriel P.(1973)Homomorphismes “abstraits” de groupes algébriques simples Annals of Math. 97 499-571
  • [4] Borel A.(1987)Algorithmic orbit classification for some Borel group actions Comp. Math. 61 3-41
  • [5] Tits J.(1979)Мобельные алчебры и пребставления чрфов Функ. анал. и его прул. 13 1-12
  • [6] Bürgstein H.(1983)Minimal algebras of infinite representation type with preprojective component Manuscripta Math. 42 221-243
  • [7] Hesselink W. H.(1997)On parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical C. R. Acad. Sci. Paris, Série I 325 465-470
  • [8] Гельфанд И. М.(1998)Algorithmic modality analysis for parabolic groups Geom. Dedicata 73 317-337
  • [9] Пономарёв В. А.(1990)Орбиты присоединённых и коприсоединённых действий борелевских подгрупп полупростых алгебраических групп Проблемы теории групп и гомологической алгебры 10 141-158
  • [10] Happel D.(1979)Closures of conjugacy classes of matrices are normal Inv. Math. 53 227-247