Finite subgroups of diffeomorphism groups

被引:0
作者
Vladimir L. Popov
机构
[1] Steklov Mathematical Institute of Russian Academy of Sciences,
来源
Proceedings of the Steklov Institute of Mathematics | 2015年 / 289卷
关键词
STEKLOV Institute; Algebraic Variety; Chevalley Group; Finite Subgroup; Isomorphic Copy;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the following: (1) the existence, for every integer n ≥ 4, of a noncompact smooth n-dimensional topological manifold whose diffeomorphism group contains an isomorphic copy of every finitely presented group; (2) a finiteness theorem for finite simple subgroups of diffeomorphism groups of compact smooth topological manifolds.
引用
收藏
页码:221 / 226
页数:5
相关论文
共 16 条
  • [1] Anderson R D(1957)Zero-dimensional compact groups of homeomorphisms Pac. J. Math. 7 797-810
  • [2] Bandman T(2015)Jordan groups and algebraic surfaces Transform. Groups 20 327-334
  • [3] Zarhin Yu G(1979)Large Abelian subgroups of Chevalley groups J. Aust. Math. Soc. A 27 59-87
  • [4] Barry M J J(1996)Introductory notes on Richard Thompson’s groups Enseign. Math., Sér. II 42 215-256
  • [5] Cannon J W(1961)Subgroups of finitely presented groups Proc. R. Soc. London A 262 455-475
  • [6] Floyd W J(1949)Embedding theorems for groups J. London Math. Soc. 24 247-254
  • [7] Parry W R(1963)Actions of elementary Trans. Am. Math. Soc. 106 115-126
  • [8] Higman G(2010)-groups on manifolds Proc. Am. Math. Soc. 138 2253-2262
  • [9] Higman G(2001)Jordan’s theorem for the diffeomorphism group of some manifolds Algebra Logika 40 523-544
  • [10] Neumann B H(1982)Large Abelian unipotent subgroups of finite Chevalley groups J. Aust. Math. Soc. A 33 331-344