On cubic Hermite coalescence hidden variable fractal interpolation functions

被引:0
|
作者
Puthan Veedu Viswanathan
Arya Kumar Bedabrata Chand
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
关键词
cubic Hermite interpolant; cubic spline; fractal interpolation function; coalescence; hidden variable; convergence; 41A05; 41A15; 41A25; 65D17; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
Hermite interpolation is a very important tool in approximation theory and numerical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermite interpolant is unique for a prescribed data set, and hence lacks freedom for the choice of an interpolating curve, which is a crucial requirement in design environment. Even though there is a rather well developed fractal theory for Hermite interpolation that offers a large flexibility in the choice of interpolants, it also has the shortcoming that the functions that can be well approximated are highly restricted to the class of self-affine functions. The primary objective of this paper is to suggest a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C}^1$$\end{document}-cubic Hermite interpolation scheme using a fractal methodology, namely, the coalescence hidden variable fractal interpolation, which works equally well for the approximation of a self-affine and non-self-affine data generating functions. The uniform error bound for the proposed fractal interpolant is established to demonstrate that the convergence properties are similar to that of the classical Hermite interpolant. For the Hermite interpolation problem, if the derivative values are not actually prescribed at the knots, then we assign these values so that the interpolant gains global \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C}^2$$\end{document}-continuity. Consequently, the procedure culminates with the construction of cubic spline coalescence hidden variable fractal interpolants. Thus, the present article also provides an alternative to the construction of cubic spline coalescence hidden variable fractal interpolation functions through moments proposed by Chand and Kapoor [Fractals, 15(1) (2007), pp. 41–53].
引用
收藏
页码:55 / 76
页数:21
相关论文
共 50 条
  • [21] Construction of cubic spline hidden variable recurrent fractal interpolation function and its fractional calculus
    Ri, Mi-Gyong
    Yun, Chol-Hui
    Kim, Myong-Hun
    CHAOS SOLITONS & FRACTALS, 2021, 150
  • [22] Generalized cubic spline fractal interpolation functions
    Chand, A. K. B.
    Kapoor, G. P.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (02) : 655 - 676
  • [23] CUBIC SPLINE SUPER FRACTAL INTERPOLATION FUNCTIONS
    Kapoor, G. P.
    Prasad, Srijanani Anurag
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2014, 22 (1-2) : 1 - 2
  • [24] Positive blending Hermite rational cubic spline fractal interpolation surfaces
    Chand, A. K. B.
    Vijender, N.
    CALCOLO, 2015, 52 (01) : 1 - 24
  • [25] Positive blending Hermite rational cubic spline fractal interpolation surfaces
    A. K. B. Chand
    N. Vijender
    Calcolo, 2015, 52 : 1 - 24
  • [26] Note on Fourier Transform of Hidden Variable Fractal Interpolation
    Agathiyan, A.
    Gowrisankar, A.
    Natarajan, Pankajam
    Bingi, Kishore
    Shaik, Nagoor Basha
    ENGINEERING JOURNAL-THAILAND, 2023, 27 (12): : 23 - 36
  • [27] Approximation using hidden variable fractal interpolation function
    Chand, Arya K. B.
    Katiyar, Saurabh K.
    Viswanathanl, Puthan V.
    JOURNAL OF FRACTAL GEOMETRY, 2015, 2 (01) : 81 - 114
  • [28] CONSTRAINED FRACTAL INTERPOLATION FUNCTIONS WITH VARIABLE SCALING
    Chand, A. K. B.
    Reddy, K. M.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 60 - 73
  • [29] On the stability of Fractal interpolation functions with variable parameters
    Attia, Najmeddine
    Saidi, Neji
    Amami, Rim
    Amami, Rimah
    AIMS MATHEMATICS, 2024, 9 (02): : 2908 - 2924
  • [30] Hidden variable bivariate fractal interpolation functions and errors on perturbations of function vertical scaling factors
    Yun, Chol-Hui
    Ri, Mi-Kyong
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (02)