Singularities of mean curvature flow

被引:0
作者
Yuanlong Xin
机构
[1] Fudan University,Institute of Mathematics
来源
Science China Mathematics | 2021年 / 64卷
关键词
mean curvature flow; self-shrinker; translating soliton; 53E10; 53E20;
D O I
暂无
中图分类号
学科分类号
摘要
Mean curvature flow and its singularities have been paid attention extensively in recent years. The present article reviews briefly their certain aspects in the author’s interests.
引用
收藏
页码:1349 / 1356
页数:7
相关论文
共 82 条
[1]  
Abresch U(1986)The normalized curve shortening flow and homothetic solutions J Differential Geom 23 175-196
[2]  
Langer J(2010)Mean curvature flow of pinched submanifolds to spheres J Differential Geom 85 357-396
[3]  
Andrews B(1995)Asymptotic shape of cusp singularities in curve shortening Duke Math J 77 71-110
[4]  
Baker C(1997)Degenerate neckpinches in mean curvature flow J Reine Angew Math 482 15-66
[5]  
Angenent S B(2014)Gauss maps of translating solitons of mean curvature flow Proc Amer Math Soc 142 4333-4339
[6]  
Velazquez J J L(2013)A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension Calc Var Partial Differential Equations 46 879-889
[7]  
Angenent S B(2012)Rigidity of entire self-shrinking solutions to curvature flows J Reine Angew Math 664 229-239
[8]  
Velazquez J J L(2016)2-dimensional complete self-shrinkers in ℝ Math Z 284 537-542
[9]  
Bao C(2015)Complete self-shrinkers of the mean curvature flow Calc Var Partial Differential Equations 52 497-506
[10]  
Shi Y G(2015)A gap theorem for self-shrinkers Trans Amer Math Soc 367 4895-4915