Vector valued multivariate spectral multipliers, Littlewood–Paley functions, and Sobolev spaces in the Hermite setting

被引:0
|
作者
J. J. Betancor
J. C. Fariña
A. Sanabria
机构
[1] Universidad de la Laguna,Departamento de Análisis Matemático
来源
Monatshefte für Mathematik | 2015年 / 176卷
关键词
Hermite multivariate multipliers; Sobolev spaces; Square functions; Vector valued harmonic analysis; UMD Banach spaces; Primary 42B25; 42B15; Secondary 42B20; 46B20; 46E40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we find new equivalent norms in Lp(Rn,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}({\mathbb {R}}^n,{\mathbb {B}})$$\end{document} by using multivariate Littlewood–Paley functions associated with Poisson semigroup for the Hermite operator, provided that B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}$$\end{document} is a UMD Banach space with the property (α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}). We make use of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-radonifying operators to get new equivalent norms that allow us to obtain Lp(Rn,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p({\mathbb {R}}^n,{\mathbb {B}})$$\end{document}-boundedness properties for (vector valued) multivariate spectral multipliers for Hermite operators. As application of this Hermite multiplier theorem we prove that the Banach valued Hermite Sobolev and potential spaces coincide.
引用
收藏
页码:165 / 195
页数:30
相关论文
共 18 条
  • [1] Vector valued multivariate spectral multipliers, Littlewood-Paley functions, and Sobolev spaces in the Hermite setting
    Betancor, J. J.
    Farina, J. C.
    Sanabria, A.
    MONATSHEFTE FUR MATHEMATIK, 2015, 176 (02): : 165 - 195
  • [2] Littlewood-Paley functions and Sobolev spaces
    Chen, Jiecheng
    Fan, Dashan
    Zhao, Fayou
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 184 : 273 - 297
  • [3] γ-Radonifying operators and UMD-valued Littlewood-Paley-Stein functions in the Hermite setting on BMO and Hardy spaces
    Betancor, J. J.
    Castro, A. J.
    Curbelo, J.
    Farina, J. C.
    Rodriguez-Mesa, L.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (12) : 3804 - 3856
  • [4] Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    Ruiz de Alarcon, Alberto
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 115 (01)
  • [5] Sobolev spaces of vector-valued functions
    Iván Caamaño
    Jesús Á. Jaramillo
    Ángeles Prieto
    Alberto Ruiz de Alarcón
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [6] Characterizing Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [7] A characterization of Hajlasz-Sobolev and Triebel-Lizorkin spaces via grand Littlewood-Paley functions
    Koskela, Pekka
    Yang, Dachun
    Zhou, Yuan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (08) : 2637 - 2661
  • [8] INTERPOLATION OF SOBOLEV SPACES, LITTLEWOOD-PALEY INEQUALITIES AND RIESZ TRANSFORMS ON GRAPHS
    Badr, Nadine
    Russ, Emmanuel
    PUBLICACIONS MATEMATIQUES, 2009, 53 (02) : 273 - 328
  • [9] Littlewood-Paley Functions and Triebel-Lizorkin Spaces, Besov Spaces
    Fan, Dashan
    Zhao, Fayou
    ANALYSIS IN THEORY AND APPLICATIONS, 2021, 37 (03): : 267 - 288
  • [10] Square functions in the Hermite setting for functions with values in UMD spaces
    Betancor, J. J.
    Castro, A. J.
    Curbelo, J.
    Faria, J. C.
    Rodriguez-Mesa, L.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (05) : 1397 - 1430