Relativistic perfect fluid spacetimes and Ricci–Yamabe solitons

被引:0
作者
Mohd. Danish Siddiqi
Uday Chand De
机构
[1] Jazan University,Department of Mathematics, College of Science
[2] University of Calcutta,Department of Pure Mathematics
来源
Letters in Mathematical Physics | 2022年 / 112卷
关键词
Ricci–Yamabe soliton; Perfect fluid spacetime; Torse-forming vector field; Schrödinger–Ricci equation; 53C44; 53B30; 53C50; 53C80;
D O I
暂无
中图分类号
学科分类号
摘要
In this research paper, we determine the Ricci–Yamabe soliton on a perfect fluid spacetime with a torse-forming vector field. Besides this, we evaluate a specific situation when the potential vector field ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document} is of the gradient type, we deduce a Poisson and a Liouville equation from the soliton equation. In addition, we explore some harmonic significance of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-Ricci–Yamabe soliton on perfect fluid spacetime with a harmonic potential function ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}. Finally, we discuss necessary and sufficient conditions for the 1-form γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, which is the g-dual of the vector field ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document} on a perfect fluid spacetime to be a solution for the Schrödinger–Ricci equation.
引用
收藏
相关论文
共 32 条
[1]  
Alias L(1995)Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson–Walker spacetime Gen. Relat. Gravit. 30 915-932
[2]  
Romero A(2014)Ricci solitons and symmetries of space time manifold of general relativity J. Adv. Res. Class. Modern Geom. 1 75-84
[3]  
Sanchez M(2009)Concircular curvature tensor and fluid spacetimes Int. J. Theor. Phys. 48 3202-3212
[4]  
Ali M(2018)On gradient Kragujev. J. Math. 42 229-237
[5]  
Ahsan Z(2020)-Einstein solitons Int. Elect. J. Geom. 13 41-49
[6]  
Ahsan Z(2016)Harmonic aspects in an Nonlinear Anal. 132 66-94
[7]  
Siddiqui SA(1996)-Ricci soliton Int. J. Theor. Phys. 35 1027-1032
[8]  
Blaga AM(2014)Gradient Einstein solitons Gen. Relat. Gravit. 46 1833-10
[9]  
Blaga AM(2017)Spacetimes with covariant constant energy momentum tensor Int. Electr. J. Geom. 10 1-231
[10]  
Catino G(2004)A simple characterization of generalized Robertson–Walker spacetime Period. Math. Hung. 48 223-1783