Semidefinite relaxations for non-convex quadratic mixed-integer programming

被引:1
|
作者
Christoph Buchheim
Angelika Wiegele
机构
[1] Technische Universität Dortmund,Fakultät für Mathematik
[2] Alpen-Adria-Universität Klagenfurt,Institut für Mathematik
来源
Mathematical Programming | 2013年 / 141卷
关键词
90C10; 90C11; 90C20; 90C22; 90C26;
D O I
暂无
中图分类号
学科分类号
摘要
We present semidefinite relaxations for unconstrained non-convex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for medium-sized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We use this approach as a bounding routine in an SDP-based branch-and-bound framework. In case of a convex objective function, the new SDP bound improves the bound given by the continuous relaxation of the problem. Numerical experiments show that our algorithm performs well on various types of non-convex instances.
引用
收藏
页码:435 / 452
页数:17
相关论文
共 50 条
  • [31] On duality theory for non-convex semidefinite programming
    Wenyu Sun
    Chengjin Li
    Raimundo J. B. Sampaio
    Annals of Operations Research, 2011, 186 : 331 - 343
  • [32] On duality theory for non-convex semidefinite programming
    Sun, Wenyu
    Li, Chengjin
    Sampaio, Raimundo J. B.
    ANNALS OF OPERATIONS RESEARCH, 2011, 186 (01) : 331 - 343
  • [33] SDP-quality bounds via convex quadratic relaxations for global optimization of mixed-integer quadratic programs
    Nohra, Carlos J.
    Raghunathan, Arvind U.
    Sahinidis, Nikolaos, V
    MATHEMATICAL PROGRAMMING, 2022, 196 (1-2) : 203 - 233
  • [34] SDP-quality bounds via convex quadratic relaxations for global optimization of mixed-integer quadratic programs
    Carlos J. Nohra
    Arvind U. Raghunathan
    Nikolaos V. Sahinidis
    Mathematical Programming, 2022, 196 : 203 - 233
  • [35] Robust Quadratic Programming with Mixed-Integer Uncertainty
    Mittal, Areesh
    Gokalp, Can
    Hanasusanto, Grani A.
    INFORMS JOURNAL ON COMPUTING, 2020, 32 (02) : 201 - 218
  • [36] Approximate Multiparametric Mixed-Integer Convex Programming
    Malyuta, Danylo
    Acikmese, Behcet
    IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (01): : 157 - 162
  • [37] Extended Formulations in Mixed-Integer Convex Programming
    Lubin, Miles
    Yamangil, Emre
    Bent, Russell
    Vielma, Juan Pablo
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 102 - 113
  • [38] Feasibility in reverse convex mixed-integer programming
    Obuchowska, Wieslawa T.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 218 (01) : 58 - 67
  • [39] On Approximation Algorithms for Concave Mixed-Integer Quadratic Programming
    Del Pia, Alberto
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 1 - 13
  • [40] Compact mixed-integer programming formulations in quadratic optimization
    Benjamin Beach
    Robert Hildebrand
    Joey Huchette
    Journal of Global Optimization, 2022, 84 : 869 - 912