Generalized Ricci solitons on contact metric manifolds

被引:0
|
作者
Gopal Ghosh
Uday Chand De
机构
[1] University of Calcutta,Department of Pure Mathematics
来源
Afrika Matematika | 2022年 / 33卷
关键词
(; )-contact metric manifold; Sasakian manifold; Generalized Ricci soliton; Einstein manifold; 53C15; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we prove that, if a N(k)-contact manifold of dimension (2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2n+1)$$\end{document} satisfies the generalized Ricci soliton equation (1.4) and X=gradf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ X=grad ~ f$$\end{document} , f being a smooth function, then f is a constant function. Furthermore, if c2≠0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{2} \ne 0,$$\end{document} then the manifold is either locally isometric to the product En+1(0)×Sn(4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{n+1}(0)\times S^n(4)$$\end{document} for n>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>1$$\end{document} and flat for n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document} , or the manifold is an Einstein one.
引用
收藏
相关论文
共 50 条
  • [41] Ricci Solitons and Killing Fields on Generalized Cahen-Wallach Manifolds
    Oskorbin, D. N.
    Rodionov, E. D.
    SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (05) : 911 - 915
  • [42] RICCI SOLITONS IN 3-DIMENSIONAL NORMAL ALMOST PARACONTACT METRIC MANIFOLDS
    Perktas, Selcen Yuksel
    Keles, Sadik
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2015, 8 (02): : 34 - 45
  • [43] ON THREE-DIMENSIONAL N(k)-PARACONTACT METRIC MANIFOLDS AND RICCI SOLITONS
    De, U. C.
    Deshmukh, S.
    Mandal, K.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (06) : 1571 - 1583
  • [44] Generalized Ricci Solitons on Three-Dimensional Lorentzian Walker Manifolds
    Vahid Pirhadi
    Ghodratallah Fasihi-Ramandi
    Shahroud Azami
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 1409 - 1423
  • [45] Ricci-Like Solitons with Vertical Potential on Sasaki-Like Almost Contact B-Metric Manifolds
    Manev, Mancho
    RESULTS IN MATHEMATICS, 2020, 75 (04)
  • [46] Generalized Ricci Solitons
    Nurowski, Pawel
    Randall, Matthew
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (02) : 1280 - 1345
  • [47] Ricci-Like Solitons with Vertical Potential on Sasaki-Like Almost Contact B-Metric Manifolds
    Mancho Manev
    Results in Mathematics, 2020, 75
  • [48] Ricci Solitons on Generalized Sasakian-Space-Forms with Kenmotsu Metric
    Rani, Savita
    Gupta, Ram Shankar
    MATHEMATICAL NOTES, 2024, 115 (1-2) : 240 - 257
  • [49] Ricci Solitons and Gradient Ricci Solitons on N(k)-Paracontact Manifolds
    Chand, De Uday
    Mandal, Krishanu
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2019, 15 (03) : 307 - 320
  • [50] Generalized Ricci Solitons
    Paweł  Nurowski
    Matthew Randall
    The Journal of Geometric Analysis, 2016, 26 : 1280 - 1345