Generalized Ricci solitons on contact metric manifolds

被引:0
|
作者
Gopal Ghosh
Uday Chand De
机构
[1] University of Calcutta,Department of Pure Mathematics
来源
Afrika Matematika | 2022年 / 33卷
关键词
(; )-contact metric manifold; Sasakian manifold; Generalized Ricci soliton; Einstein manifold; 53C15; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we prove that, if a N(k)-contact manifold of dimension (2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2n+1)$$\end{document} satisfies the generalized Ricci soliton equation (1.4) and X=gradf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ X=grad ~ f$$\end{document} , f being a smooth function, then f is a constant function. Furthermore, if c2≠0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{2} \ne 0,$$\end{document} then the manifold is either locally isometric to the product En+1(0)×Sn(4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{n+1}(0)\times S^n(4)$$\end{document} for n>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>1$$\end{document} and flat for n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document} , or the manifold is an Einstein one.
引用
收藏
相关论文
共 50 条