Generalized Ricci solitons on contact metric manifolds

被引:0
|
作者
Gopal Ghosh
Uday Chand De
机构
[1] University of Calcutta,Department of Pure Mathematics
来源
Afrika Matematika | 2022年 / 33卷
关键词
(; )-contact metric manifold; Sasakian manifold; Generalized Ricci soliton; Einstein manifold; 53C15; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we prove that, if a N(k)-contact manifold of dimension (2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2n+1)$$\end{document} satisfies the generalized Ricci soliton equation (1.4) and X=gradf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ X=grad ~ f$$\end{document} , f being a smooth function, then f is a constant function. Furthermore, if c2≠0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{2} \ne 0,$$\end{document} then the manifold is either locally isometric to the product En+1(0)×Sn(4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{n+1}(0)\times S^n(4)$$\end{document} for n>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>1$$\end{document} and flat for n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document} , or the manifold is an Einstein one.
引用
收藏
相关论文
共 50 条
  • [21] SOME RESULTS ON RICCI SOLITON ON CONTACT METRIC MANIFOLDS
    Pandey, Pankaj
    Sharma, Kamakshi
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (03): : 473 - 486
  • [22] Ricci Solitons and Gradient Ricci Solitons in a Kenmotsu Manifolds
    De, Uday Chand
    Matsuyama, Yoshio
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 691 - 697
  • [23] Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds
    D. N. Oskorbin
    E. D. Rodionov
    Siberian Mathematical Journal, 2019, 60 : 911 - 915
  • [24] Generalized η-Ricci Solitons on Kenmotsu Manifolds associated to the General Connection
    Azami, Shahroud
    KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (02): : 261 - 270
  • [25] η-RICCI SOLITONS ON KENMOTSU MANIFOLD WITH GENERALIZED SYMMETRIC METRIC CONNECTION
    Siddiqi, Mohd Danish
    Bahadir, Oguzhan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (02): : 295 - 310
  • [26] A Study on Contact Metric Manifolds Admitting a Type of Solitons
    Mandal, Tarak
    De, Uday Chand
    Khan, Meraj Ali
    Khan, Mohammad Nazrul Islam
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [27] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458
  • [28] Three dimensional contact metric manifolds with Cotton solitons
    Chen, Xiaomin
    HIROSHIMA MATHEMATICAL JOURNAL, 2021, 51 (03) : 275 - 299
  • [29] RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY KENMOTSU MANIFOLDS
    Ayar, Gulhan
    Yildirim, Mustafa
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (03): : 503 - 510
  • [30] Ricci-like Solitons with Arbitrary Potential and Gradient Almost Ricci-like Solitons on Sasaki-like Almost Contact B-metric Manifolds
    Mancho Manev
    Results in Mathematics, 2022, 77