Generalized Ricci solitons on contact metric manifolds

被引:0
|
作者
Gopal Ghosh
Uday Chand De
机构
[1] University of Calcutta,Department of Pure Mathematics
来源
Afrika Matematika | 2022年 / 33卷
关键词
(; )-contact metric manifold; Sasakian manifold; Generalized Ricci soliton; Einstein manifold; 53C15; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we prove that, if a N(k)-contact manifold of dimension (2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2n+1)$$\end{document} satisfies the generalized Ricci soliton equation (1.4) and X=gradf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ X=grad ~ f$$\end{document} , f being a smooth function, then f is a constant function. Furthermore, if c2≠0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{2} \ne 0,$$\end{document} then the manifold is either locally isometric to the product En+1(0)×Sn(4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{n+1}(0)\times S^n(4)$$\end{document} for n>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>1$$\end{document} and flat for n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document} , or the manifold is an Einstein one.
引用
收藏
相关论文
共 50 条
  • [1] Generalized Ricci solitons on contact metric manifolds
    Ghosh, Gopal
    De, Uday Chand
    AFRIKA MATEMATIKA, 2022, 33 (02)
  • [2] Generalized Ricci Solitons on N(κ)-contact Metric Manifolds
    Mandal, Tarak
    Biswas, Urmila
    Sarkar, Avijit
    KYUNGPOOK MATHEMATICAL JOURNAL, 2023, 63 (02): : 313 - 324
  • [3] RICCI SOLITONS AND CONTACT METRIC MANIFOLDS
    Ghosh, Amalendu
    GLASGOW MATHEMATICAL JOURNAL, 2013, 55 (01) : 123 - 130
  • [4] REMARKS ON RIEMANN AND RICCI SOLITONS IN (α, β)-CONTACT METRIC MANIFOLDS
    Blaga, Adara M.
    Latcu, Dan Radu
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2020, 58 : 1 - 12
  • [5] η-Ricci Solitons on N(k)-Contact Metric Manifolds
    Sarkar, Avijit
    Sardar, Arpan
    FILOMAT, 2021, 35 (11) : 3879 - 3889
  • [6] CERTAIN SOLITONS ON GENERALIZED (κ, μ) CONTACT METRIC MANIFOLDS
    Sarkar, Avijit
    Bhakta, Pradip
    KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (04): : 847 - 863
  • [7] Ricci solitons and gradient Ricci solitons on 3-dimensional normal almost contact metric manifolds
    De, Uday Chand
    Turan, Mine
    Yildiz, Ahmet
    De, Avik
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (1-2): : 127 - 142
  • [8] Notes on K-contact manifolds as generalized Ricci solitons
    Mekki, Mohammed El Amine
    Cherif, Ahmed Mohammed
    AFRIKA MATEMATIKA, 2023, 34 (02)
  • [9] Notes on K-contact manifolds as generalized Ricci solitons
    Mohammed El Amine Mekki
    Ahmed Mohammed Cherif
    Afrika Matematika, 2023, 34
  • [10] Ricci Solitons on η-Einstein Contact Manifolds
    Chand, De Uday
    Suh, Young Jin
    Majhi, Pradip Kumar
    FILOMAT, 2018, 32 (13) : 4679 - 4687