Wafer direct bonding with ambient pressure plasma activation

被引:0
|
作者
Markus Gabriel
Brad Johnson
Ralf Suss
Manfred Reiche
Marko Eichler
机构
[1] Süss MicroTec AG,
[2] Max-Planck-Institut für Mikrostrukturphysik,undefined
[3] Fraunhofer Institute for Surface Engineering and Thin Films,undefined
来源
Microsystem Technologies | 2006年 / 12卷
关键词
Ambient pressure plasma; Activation; Wafer bonding; MEMS; Engineered substrates;
D O I
暂无
中图分类号
学科分类号
摘要
Ambient pressure plasma processes were applied for surface activation of semiconductor (Si, Ge and GaAs) and other wafers (glass) before direct wafer bonding for MEMS and engineered substrates. Surface properties of activated wafers were analysed. Caused by activation high bond energies were obtained for homogeneous (e.g. Si/Si) as well as for heterogeneous material combinations (for instance Si/Ge) after a subsequent low temperature annealing process at 200°C. The resulting bond energies are analogous or higher as obtained for low-pressure plasma activation processes. The advantages of the ambient pressure plasma processes are described; a technical solution is discussed demonstrating the low risk for contamination and radiation damage.
引用
收藏
页码:397 / 400
页数:3
相关论文
共 50 条
  • [21] Point defects generated by direct-wafer bonding of silicon
    L. Dózsa
    B. Szentpáli
    D. Pasquariello
    K. Hjort
    Journal of Electronic Materials, 2002, 31 : 113 - 118
  • [22] Direct wafer bonding for encapsulation of fused silica optical gratings
    Kalkowski, G.
    Zeitner, U.
    Benkenstein, T.
    Fuchs, J.
    Rothhardt, C.
    Eberhardt, R.
    MICROELECTRONIC ENGINEERING, 2012, 97 : 177 - 180
  • [23] Point defects generated by direct-wafer bonding of silicon
    Dózsa, L
    Szentpáli, B
    Pasquariello, D
    Hjort, K
    JOURNAL OF ELECTRONIC MATERIALS, 2002, 31 (02) : 113 - 118
  • [24] Surface activation for low temperature wafer fusion bonding by radicals produced in an oxygen discharge
    Kowal, J.
    Nixon, T.
    Aitken, N.
    Braithwaite, N. St. J.
    SENSORS AND ACTUATORS A-PHYSICAL, 2009, 155 (01) : 145 - 151
  • [25] Wafer bonding techniques for MEMS
    Miki, N
    SENSOR LETTERS, 2005, 3 (04) : 263 - 273
  • [26] Wafer bonding with an adhesive coating
    Klink, G
    Hillerich, B
    MICROMACHINED DEVICES AND COMPONENTS IV, 1998, 3514 : 50 - 61
  • [27] An ambient pressure, direct hydrogenation of ketones
    Zhang, Long
    Lu, Zhiyao
    Rander, Andrew R.
    Williams, Travis J.
    CHEMICAL COMMUNICATIONS, 2023, 59 (52) : 8107 - 8110
  • [28] Comprehensive Assessments in Bonding Energy of Plasma Assisted Si-SiO2 Direct Wafer Bonding after Low Temperature Rapid Thermal Annealing
    Lee, Youngseok
    You, Yebin
    Cho, Chulhee
    Kim, Sijun
    Lee, Jangjae
    Kim, Minyoung
    Lee, Hanglim
    You, Youngjun
    Kim, Kyungman
    You, ShinJae
    MICROMACHINES, 2022, 13 (11)
  • [29] TEOS and thermal oxide low temperature direct wafer bonding dynamics
    Michaud, L. G.
    Abadie, K.
    Fournel, F.
    Morales, C.
    Larrey, V.
    Caulfield, B.
    Wimplinger, M.
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2025, 64 (04)
  • [30] Metal Wafer Bonding for MEMS Devices
    Dragoi, Viorel
    Cakmak, Erkan
    Pabo, Eric
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2010, 13 (01): : 65 - 72