On a Hilbert-type integral inequality in the whole plane with the equivalent forms

被引:0
作者
B. C. Yang
D. Andrica
O. Bagdasar
M. Th. Rassias
机构
[1] Guangdong University of Education,Department of Mathematics
[2] Babeş-Bolyai University,Faculty of Mathematics and Computer Science
[3] University of Derby,School of Computing and Engineering
[4] Hellenic Military Academy,Department of Mathematics and Engineering Sciences
[5] Institute for Advanced Study,undefined
[6] Program in Interdisciplinary Studies,undefined
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2023年 / 117卷
关键词
Hilbert-type integral inequality; Weight function; Equivalent form; Operator; Norm; 26D15; 47A05;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we establish a few equivalent conditions of a Hilbert-type integral inequality with a non-homogeneous kernel in the whole plane. A few equivalent conditions of a Hilbert-type integral inequality with the homogeneous kernel in the whole plane are deduced, in the form of applications. We additionally consider operator expressions and several interesting particular cases.
引用
收藏
相关论文
共 31 条
[1]  
Yang BC(2006)On the norm of an integral operator and applications J. Math. Anal. Appl. 321 182-192
[2]  
Yang BC(2007)On the norm of a Hilbert’s type linear operator and applications J. Math. Anal. Appl. 325 529-541
[3]  
Xin DM(2010)A Hilbert-type integral inequality with the homogeneous kernel of zero degree Math. Theory Appl. 30 70-74
[4]  
Yang BC(2010)A Hilbert-type integral inequality with the homogeneous kernel of degree 0 J. Shandong Univ. (Natural Science) 45 103-106
[5]  
Yang BC(2012)A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0 J. Math. Inequal. 6 401-417
[6]  
Krnic M(2013)A multidimensional half - discrete Hilbert - type inequality and the Riemann zeta function Appl. Math. Comput. 225 263-277
[7]  
Rassias ThM(2015)A survey on the study of Hilbert-type inequalities J. Inequal. Appl. 2015 302-859
[8]  
Yang BC(2007)A new Hilbert-type integral inequality Soochow J. Math. 33 849-211
[9]  
Chen Q(2010)On a Hilbert-type integral inequality with the homogeneous kernel of 0-degree and the hypergeometrc function Math. Pract. Theory 40 105-1090
[10]  
Yang BC(2008)A new Hilbert-type integral inequality with some parameters J. Jilin Univ. (Science Edition) 46 1085-169