Non-resonant anomaly detection with background extrapolation

被引:0
作者
Bai, Kehang [1 ,2 ,3 ]
Mastandrea, Radha [3 ,4 ]
Nachman, Benjamin [4 ,5 ]
机构
[1] Univ Oregon, Inst Fundamental Sci, Eugene, OR 97403 USA
[2] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
[3] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 04期
基金
美国国家科学基金会;
关键词
Models for Dark Matter; Specific BSM Phenomenology;
D O I
10.1007/JHEP04(2024)059
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Complete anomaly detection strategies that are both signal sensitive and compatible with background estimation have largely focused on resonant signals. Non-resonant new physics scenarios are relatively under-explored and may arise from off-shell effects or final states with significant missing energy. In this paper, we extend a class of weakly supervised anomaly detection strategies developed for resonant physics to the non-resonant case. Machine learning models are trained to reweight, generate, or morph the background, extrapolated from a control region. A classifier is then trained in a signal region to distinguish the estimated background from the data. The new methods are demonstrated using a semi-visible jet signature as a benchmark signal model, and are shown to automatically identify the anomalous events without specifying the signal ahead of time.
引用
收藏
页数:25
相关论文
共 133 条
[71]   Tree-based algorithms for weakly supervised anomaly detection [J].
Finke, Thorben ;
Hein, Marie ;
Kasieczka, Gregor ;
Kraemer, Michael ;
Mueck, Alexander ;
Prangchaikul, Parada ;
Quadfasel, Tobias ;
Shih, David ;
Sommerhalder, Manuel .
PHYSICAL REVIEW D, 2024, 109 (03)
[72]   Boosting mono-jet searches with model-agnostic machine learning [J].
Finke, Thorben ;
Kraemer, Michael ;
Lipp, Maximilian ;
Muck, Alexander .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
[73]   Autoencoders for unsupervised anomaly detection in high energy physics [J].
Finke, Thorben ;
Kraemer, Michael ;
Morandini, Alessandro ;
Mueck, Alexander ;
Oleksiyuk, Ivan .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (06)
[74]   Challenges for unsupervised anomaly detection in particle physics [J].
Fraser, Katherine ;
Homiller, Samuel ;
Mishra, Rashmish K. ;
Ostdiek, Bryan ;
Schwartz, Matthew D. .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (03)
[75]   Anomaly detection in the presence of irrelevant features [J].
Freytsis, Marat ;
Perelstein, Maxim ;
San, Yik Chuen .
JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (02)
[76]  
Golling T., 2023, P 34 C NEUR INF PROC
[77]   The interplay of machine learning-based resonant anomaly detection methods [J].
Golling, Tobias ;
Kasieczka, Gregor ;
Krause, Claudius ;
Mastandrea, Radha ;
Nachman, Benjamin ;
Raine, John Andrew ;
Sengupta, Debajyoti ;
Shih, David ;
Sommerhalder, Manuel .
EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (03)
[78]   Morphing one dataset into another with maximum likelihood estimation [J].
Golling, Tobias ;
Klein, Samuel ;
Mastandrea, Radha ;
Nachman, Benjamin ;
Raine, John Andrew .
PHYSICAL REVIEW D, 2023, 108 (09)
[79]   Flow-enhanced transportation for anomaly detection [J].
Golling, Tobias ;
Klein, Samuel ;
Mastandrea, Radha ;
Nachman, Benjamin .
PHYSICAL REVIEW D, 2023, 107 (09)
[80]   LHC physics dataset for unsupervised New Physics detection at 40 MHz [J].
Govorkova, Ekaterina ;
Puljak, Ema ;
Aarrestad, Thea ;
Pierini, Maurizio ;
Wozniak, Kinga Anna ;
Ngadiuba, Jennifer .
SCIENTIFIC DATA, 2022, 9 (01)