Non-resonant anomaly detection with background extrapolation

被引:0
作者
Bai, Kehang [1 ,2 ,3 ]
Mastandrea, Radha [3 ,4 ]
Nachman, Benjamin [4 ,5 ]
机构
[1] Univ Oregon, Inst Fundamental Sci, Eugene, OR 97403 USA
[2] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
[3] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 04期
基金
美国国家科学基金会;
关键词
Models for Dark Matter; Specific BSM Phenomenology;
D O I
10.1007/JHEP04(2024)059
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Complete anomaly detection strategies that are both signal sensitive and compatible with background estimation have largely focused on resonant signals. Non-resonant new physics scenarios are relatively under-explored and may arise from off-shell effects or final states with significant missing energy. In this paper, we extend a class of weakly supervised anomaly detection strategies developed for resonant physics to the non-resonant case. Machine learning models are trained to reweight, generate, or morph the background, extrapolated from a control region. A classifier is then trained in a signal region to distinguish the estimated background from the data. The new methods are demonstrated using a semi-visible jet signature as a benchmark signal model, and are shown to automatically identify the anomalous events without specifying the signal ahead of time.
引用
收藏
页数:25
相关论文
共 133 条
[41]   Event-Based Anomaly Detection for Searches for New Physics [J].
Chekanov, Sergei ;
Hopkins, Walter .
UNIVERSE, 2022, 8 (10)
[42]   Enhancing the hunt for new phenomena in dijet final states using anomaly detection filters at the high-luminosity large Hadron Collider [J].
Chekanov, Sergei V. ;
Zhang, Rui .
EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (03)
[43]   Variational autoencoders for anomalous jet tagging [J].
Cheng, Taoli ;
Arguin, Jean-Francois ;
Leissner-Martin, Julien ;
Pilette, Jacinthe ;
Golling, Tobias .
PHYSICAL REVIEW D, 2023, 107 (01)
[44]  
2023, Arxiv, DOI arXiv:2309.10157
[45]  
Cohen Timothy, 2023, Physical Review D, DOI 10.1103/PhysRevD.108.L031501
[46]   Jet substructure from dark sector showers [J].
Cohen, Timothy ;
Doss, Joel ;
Freytsis, Marat .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (09)
[47]   LHC searches for dark sector showers [J].
Cohen, Timothy ;
Lisanti, Mariangela ;
Lou, Hou Keong ;
Mishra-Sharma, Siddharth .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11)
[48]   Semivisible Jets: Dark Matter Undercover at the LHC [J].
Cohen, Timothy ;
Lisanti, Mariangela ;
Lou, Hou Keong .
PHYSICAL REVIEW LETTERS, 2015, 115 (17)
[49]   Anomaly Detection for Resonant New Physics with Machine Learning [J].
Collins, Jack ;
Howe, Kiel ;
Nachman, Benjamin .
PHYSICAL REVIEW LETTERS, 2018, 121 (24)
[50]   Comparing weak- and unsupervised methods for resonant anomaly detection [J].
Collins, Jack H. ;
Martin-Ramiro, Pablo ;
Nachman, Benjamin ;
Shih, David .
EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (07)