On the performance of a GPU-based SoC in a distributed spatial audio system

被引:0
|
作者
Jose A. Belloch
José M. Badía
Diego F. Larios
Enrique Personal
Miguel Ferrer
Laura Fuster
Mihaita Lupoiu
Alberto Gonzalez
Carlos León
Antonio M. Vidal
Enrique S. Quintana-Ortí
机构
[1] Universidad Carlos III de Madrid,Depto. de Tecnología Electrónica
[2] Universitat Jaume I de Castellón,Depto. de Ingeniería y Ciencia de Computadores
[3] Universidad de Sevilla,Depto. de Tecnología Electrónica
[4] Universitat Politècnica de València,undefined
来源
关键词
Wave field synthesis; Spatial audio; Real time; Embedded systems; GPU; Jetson Nano; System-on-chip (SoC);
D O I
暂无
中图分类号
学科分类号
摘要
Many current system-on-chip (SoC) devices are composed of low-power multicore processors combined with a small graphics accelerator (or GPU) offering a trade-off between computational capacity and low-power consumption. In this context, spatial audio methods such as wave field synthesis (WFS) can benefit from a distributed system composed of several SoCs that collaborate to tackle the high computational cost of rendering virtual sound sources. This paper aims at evaluating important aspects dealing with a distributed WFS implementation that runs over a network of Jetson Nano boards composed of embedded GPU-based SoCs: computational performance, energy efficiency, and synchronization issues. Our results show that the maximum efficiency is obtained when the WFS system operates the GPU frequency at 691.2 MHz, achieving 11 sources-per-Watt. Synchronization experiments using the NTP protocol show that the maximum initial delay of 10 ms between nodes does not prevent us from achieving high spatial sound quality.
引用
收藏
页码:6920 / 6935
页数:15
相关论文
共 50 条
  • [41] GPU-based ocean rendering
    Chiu, Yung-Feng
    Chang, Chun-Fa
    2006 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO - ICME 2006, VOLS 1-5, PROCEEDINGS, 2006, : 2125 - 2128
  • [42] MegBA: A GPU-Based Distributed Library for Large-Scale Bundle Adjustment
    Ren, Jie
    Liang, Wenteng
    Yan, Ran
    Mai, Luo
    Liu, Shiwen
    Liu, Xiao
    COMPUTER VISION, ECCV 2022, PT XXXVII, 2022, 13697 : 715 - 731
  • [43] GPU-based fast processing for a distributed acoustic sensor using an LFM pulse
    Wang, Shuanghao
    Jiang, Junfeng
    Wang, Shuang
    Ma, Zhe
    Xu, Tianhua
    Ding, Zhenyang
    Lv, Zhankun
    Liu, Tiegen
    APPLIED OPTICS, 2020, 59 (35) : 11098 - 11103
  • [44] EVALUATION OF MOG VIDEO SEGMENTATION ON GPU-BASED HPC SYSTEM
    Jablonski, Miroslaw
    Przybylo, Jaromir
    COMPUTING AND INFORMATICS, 2016, 35 (05) : 1141 - 1159
  • [45] GPU-based Acceleration of System-level Design Tasks
    Unmesh D. Bordoloi
    Samarjit Chakraborty
    International Journal of Parallel Programming, 2010, 38 : 225 - 253
  • [46] An Effective Beamforming Algorithm for a GPU-based Ultrasound Imaging System
    Kwon, Jiwon
    Song, Jae Hee
    Bae, Sua
    Song, Tai-kyoung
    Yoo, Yangmo
    2012 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2012, : 619 - 622
  • [47] Advanced GPU-Based State-Preserving Particle System
    Cai, Xingquan
    Li, Jinhong
    Yang, Jian
    Su, Zhitong
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 4236 - 4240
  • [48] Solutions to the st-connectivity problem using a GPU-based distributed BFS
    Bernaschi, Massimo
    Carbone, Giancarlo
    Mastrostefano, Enrico
    Vella, Flavio
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2015, 76 : 145 - 153
  • [49] GPU-based distributed bee swarm optimisation for dynamic vehicle routing problem
    Grid, Maroua
    Djedi, NourEddine
    Bitam, Salim
    INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING, 2019, 31 (03) : 155 - 177