On the performance of a GPU-based SoC in a distributed spatial audio system

被引:0
|
作者
Jose A. Belloch
José M. Badía
Diego F. Larios
Enrique Personal
Miguel Ferrer
Laura Fuster
Mihaita Lupoiu
Alberto Gonzalez
Carlos León
Antonio M. Vidal
Enrique S. Quintana-Ortí
机构
[1] Universidad Carlos III de Madrid,Depto. de Tecnología Electrónica
[2] Universitat Jaume I de Castellón,Depto. de Ingeniería y Ciencia de Computadores
[3] Universidad de Sevilla,Depto. de Tecnología Electrónica
[4] Universitat Politècnica de València,undefined
来源
关键词
Wave field synthesis; Spatial audio; Real time; Embedded systems; GPU; Jetson Nano; System-on-chip (SoC);
D O I
暂无
中图分类号
学科分类号
摘要
Many current system-on-chip (SoC) devices are composed of low-power multicore processors combined with a small graphics accelerator (or GPU) offering a trade-off between computational capacity and low-power consumption. In this context, spatial audio methods such as wave field synthesis (WFS) can benefit from a distributed system composed of several SoCs that collaborate to tackle the high computational cost of rendering virtual sound sources. This paper aims at evaluating important aspects dealing with a distributed WFS implementation that runs over a network of Jetson Nano boards composed of embedded GPU-based SoCs: computational performance, energy efficiency, and synchronization issues. Our results show that the maximum efficiency is obtained when the WFS system operates the GPU frequency at 691.2 MHz, achieving 11 sources-per-Watt. Synchronization experiments using the NTP protocol show that the maximum initial delay of 10 ms between nodes does not prevent us from achieving high spatial sound quality.
引用
收藏
页码:6920 / 6935
页数:15
相关论文
共 50 条
  • [21] Performance Prediction of GPU-based Deep Learning Applications
    Gianniti, Eugenio
    Zhang, Li
    Ardagna, Danilo
    CLOSER: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICES SCIENCE, 2019, : 279 - 286
  • [22] Dynamic Memory Bandwidth Allocation for Real-Time GPU-Based SoC Platforms
    Aghilinasab, Homa
    Ali, Waqar
    Yun, Heechul
    Pellizzoni, Rodolfo
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2020, 39 (11) : 3348 - 3360
  • [23] Large-scale Distributed Sorting for GPU-based Heterogeneous Supercomputers
    Shamoto, Hideyuki
    Shirahata, Koichi
    Drozd, Aleksandr
    Sato, Hitoshi
    Matsuoka, Satoshi
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 510 - 518
  • [24] GPU-based Image Compression for Efficient Compositing in Distributed Rendering Applications
    Lipinksi, Riley
    Moreland, Kenneth
    Papka, Michael E.
    Marrinan, Thomas
    2021 IEEE 11TH SYMPOSIUM ON LARGE DATA ANALYSIS AND VISUALIZATION (LDAV 2021), 2021, : 43 - 52
  • [25] Concurrent query processing in a GPU-based database system
    Li, Hao
    Tu, Yi-Cheng
    Zeng, Bo
    PLOS ONE, 2019, 14 (04):
  • [26] Fast GPU-based computation of spatial multigrid multiframe LMEM for PET
    Nassiri, Moulay Ali
    Carrier, Jean-Francois
    Despres, Philippe
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2015, 53 (09) : 791 - 803
  • [27] Fast GPU-based computation of spatial multigrid multiframe LMEM for PET
    Moulay Ali Nassiri
    Jean-François Carrier
    Philippe Després
    Medical & Biological Engineering & Computing, 2015, 53 : 791 - 803
  • [28] Performance-aware composition framework for GPU-based systems
    Usman Dastgeer
    Christoph Kessler
    The Journal of Supercomputing, 2015, 71 : 4646 - 4662
  • [29] GPU-based high-performance computing for radiation therapy
    Jia, Xun
    Ziegenhein, Peter
    Jiang, Steve B.
    PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (04): : R151 - R182
  • [30] Lossless Data Compression for Improving the Performance of a GPU-Based Beamformer
    Lok, U-Wai
    Fan, Gang-Wei
    Li, Pai-Chi
    ULTRASONIC IMAGING, 2015, 37 (02) : 135 - 151