On the performance of a GPU-based SoC in a distributed spatial audio system

被引:0
作者
Jose A. Belloch
José M. Badía
Diego F. Larios
Enrique Personal
Miguel Ferrer
Laura Fuster
Mihaita Lupoiu
Alberto Gonzalez
Carlos León
Antonio M. Vidal
Enrique S. Quintana-Ortí
机构
[1] Universidad Carlos III de Madrid,Depto. de Tecnología Electrónica
[2] Universitat Jaume I de Castellón,Depto. de Ingeniería y Ciencia de Computadores
[3] Universidad de Sevilla,Depto. de Tecnología Electrónica
[4] Universitat Politècnica de València,undefined
来源
The Journal of Supercomputing | 2021年 / 77卷
关键词
Wave field synthesis; Spatial audio; Real time; Embedded systems; GPU; Jetson Nano; System-on-chip (SoC);
D O I
暂无
中图分类号
学科分类号
摘要
Many current system-on-chip (SoC) devices are composed of low-power multicore processors combined with a small graphics accelerator (or GPU) offering a trade-off between computational capacity and low-power consumption. In this context, spatial audio methods such as wave field synthesis (WFS) can benefit from a distributed system composed of several SoCs that collaborate to tackle the high computational cost of rendering virtual sound sources. This paper aims at evaluating important aspects dealing with a distributed WFS implementation that runs over a network of Jetson Nano boards composed of embedded GPU-based SoCs: computational performance, energy efficiency, and synchronization issues. Our results show that the maximum efficiency is obtained when the WFS system operates the GPU frequency at 691.2 MHz, achieving 11 sources-per-Watt. Synchronization experiments using the NTP protocol show that the maximum initial delay of 10 ms between nodes does not prevent us from achieving high spatial sound quality.
引用
收藏
页码:6920 / 6935
页数:15
相关论文
共 35 条
  • [1] Berkhout A(1988)A holographic approach to acoustic control J Audio Eng Soc 36 2764-2778
  • [2] Theodoropoulos D(2011)Multi-core platforms for beamforming and wave field synthesis IEEE Trans Multimed 3 235-245
  • [3] Kuzmanov G(2017)GPU-based dynamic wave field synthesis using fractional delay filters and room compensation IEEE/ACM Trans Audio Speech Lang Process 25 435-447
  • [4] Gaydadjiev G(2020)Design and implementation of acoustic source localization on a low-cost IoT edge platform IEEE Trans Circuits Syst II: Express Briefs 67 3547-3551
  • [5] Belloch JA(2018)Optimized fundamental signal processing operations for energy minimization on heterogeneous mobile devices IEEE Trans Circuits Syst I: Regul Pap 65 1614-1627
  • [6] Gonzalez A(2020)Augmented virtual teleportation for high-fidelity telecollaboration IEEE Trans Vis Comput Graph 26 1923-1933
  • [7] Quintana-Ortí ES(2005)Wireless sensor networks: applications and challenges of ubiquitous sensing IEEE Circuits Syst Mag 5 19-31
  • [8] Ferrer M(2004)Dynamic clustering for acoustic target tracking in wireless sensor networks IEEE Trans Mob Comput 3 258-271
  • [9] Välimäki V(1993)Acoustic control by wave field synthesis J Acoust Soc Am 93 2764-2778
  • [10] Fabregat G(2001)Time and frequency measurements using the global positioning system Cal Lab: Int J Metrol 8 26-33