XEM: An explainable-by-design ensemble method for multivariate time series classification

被引:0
作者
Kevin Fauvel
Élisa Fromont
Véronique Masson
Philippe Faverdin
Alexandre Termier
机构
[1] Inria,
[2] Univ Rennes,undefined
[3] CNRS,undefined
[4] IRISA,undefined
[5] Univ Rennes,undefined
[6] IUF,undefined
[7] Inria,undefined
[8] CNRS,undefined
[9] IRISA,undefined
[10] PEGASE,undefined
[11] INRAE,undefined
[12] AGROCAMPUS OUEST,undefined
来源
Data Mining and Knowledge Discovery | 2022年 / 36卷
关键词
Classification; Ensemble learning; Explainability; Multivariate time series;
D O I
暂无
中图分类号
学科分类号
摘要
We present XEM, an eXplainable-by-design Ensemble method for Multivariate time series classification. XEM relies on a new hybrid ensemble method that combines an explicit boosting-bagging approach to handle the bias-variance trade-off faced by machine learning models and an implicit divide-and-conquer approach to individualize classifier errors on different parts of the training data. Our evaluation shows that XEM outperforms the state-of-the-art MTS classifiers on the public UEA datasets. Furthermore, XEM provides faithful explainability-by-design and manifests robust performance when faced with challenges arising from continuous data collection (different MTS length, missing data and noise).
引用
收藏
页码:917 / 957
页数:40
相关论文
共 72 条
  • [1] Baydogan M(2014)Learning a symbolic representation for multivariate time series classification Data Min Knowl Disc 29 400-422
  • [2] Runger G(2016)Time series representation and similarity based on local autopatterns Data Min Knowl Disc 30 476-509
  • [3] Baydogan M(2006)Statistical comparisons of classifiers over multiple data sets J Mach Learn Res 7 1-30
  • [4] Runger G(2012)Boost-wise pre-loaded mixture of experts for classification tasks Neural Comput Appl 22 365-377
  • [5] Demšar J(2019)A guide to deep learning in healthcare Nat Med 25 24-29
  • [6] Ebrahimpour R(2000)Cascade generalization Mach Learn 41 315-343
  • [7] Sadeghnejad N(2019)Factual and counterfactual explanations for black box decision making IEEE Intell Syst 34 14-23
  • [8] Arani S(1991)Adaptive mixtures of local experts Neural Comput 3 79-87
  • [9] Mohammadi N(2019)Multivariate LSTM-FCNs for time series classification Neural Netw 116 237-245
  • [10] Esteva A(2016)Generalized random shapelet forests Data Min Knowl Disc 30 1053-1085