Nonlinear robust periodic output regulation of minimum phase systems

被引:0
|
作者
Daniele Astolfi
Laurent Praly
Lorenzo Marconi
机构
[1] Univ Lyon,MINES ParisTech
[2] Université Claude Bernard Lyon 1,CASY
[3] CNRS,DEI
[4] LAGEPP UMR 5007,undefined
[5] 43 boulevard du 11 Novembre 1918,undefined
[6] PSL Research University,undefined
[7] CAS - Centre automatique et systémes,undefined
[8] University of Bologna,undefined
关键词
Nonlinear output regulation; Repetitive control; Minimum phase systems; Harmonic rejection;
D O I
暂无
中图分类号
学科分类号
摘要
In linear system theory, it is a well-known fact that a regulator given by the cascade of an oscillatory dynamics, driven by some regulated variables, and of a stabiliser stabilising the cascade of the plant and of the oscillators has the ability of blocking on the steady state of the regulated variables any harmonics matched with the ones of the oscillators. This is the well-celebrated internal model principle. In this paper, we are interested to follow the same design route for a controlled plant that is a nonlinear and periodic system with period T: we add a bunch of linear oscillators, embedding no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document} harmonics that are multiple of 2π/T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \pi /T$$\end{document}, driven by a “regulated variable” of the nonlinear system, we look for a stabiliser for the nonlinear cascade of the plant and the oscillators, and we study the asymptotic properties of the resulting closed-loop regulated variable. In this framework, the contributions of the paper are multiple: for specific class of minimum-phase systems we present a systematic way of designing a stabiliser, which is uniform with respect to no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document}, by using a mix of high-gain and forwarding techniques; we prove that the resulting closed-loop system has a periodic steady state with period T with a domain of attraction not shrinking with no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document}; similarly to the linear case, we also show that the spectrum of the steady-state closed-loop regulated variable does not contain the n harmonics embedded in the bunch of oscillators and that the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} norm of the regulated variable is a monotonically decreasing function of no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document}. The results are robust, namely the asymptotic properties on the regulated variable hold also in the presence of any uncertainties in the controlled plant not destroying closed-loop stability.
引用
收藏
页码:129 / 184
页数:55
相关论文
共 50 条
  • [1] Nonlinear robust periodic output regulation of minimum phase systems
    Astolfi, Daniele
    Praly, Laurent
    Marconi, Lorenzo
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2022, 34 (01) : 129 - 184
  • [2] Semiglobal robust output regulation of minimum-phase nonlinear systems
    Serrani, A
    Isidori, A
    Marconi, L
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2000, 10 (05) : 379 - 396
  • [3] Robust output regulation of minimum phase nonlinear systems using conditional servocompensators
    Seshagiri, S
    Khalil, HK
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2005, 15 (02) : 83 - 102
  • [4] Robust output feedback regulation of minimum-phase nonlinear systems using conditional integrators?
    Seshagiri, S
    Khalil, HK
    AUTOMATICA, 2005, 41 (01) : 43 - 54
  • [5] Robust output regulation for uncertain nonlinear minimum phase systems under unknown control direction
    Gong, Yizhou
    Zhu, Fanglai
    Wang, Yang
    SYSTEMS & CONTROL LETTERS, 2024, 185
  • [6] Global robust output regulation for non-minimum phase nonlinear systems in lower triangular form
    Zhong Renxin
    Huang Jie
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 6, 2007, : 657 - +
  • [7] Robust output regulation for a class of non-minimum phase systems
    Serrani, A
    Isidori, A
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 867 - 872
  • [8] Robust output regulation of a class of uncertain nonlinear minimum phase systems perturbed by unknown external disturbances
    Gong, Yizhou
    Zhu, Fanglai
    Wang, Yang
    EUROPEAN JOURNAL OF CONTROL, 2024, 77
  • [9] Output Regulation for Robustly Minimum-Phase Multivariable Nonlinear Systems
    Pyrkin, Anton
    Isidori, Alberto
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [10] Asymptotic regulation of minimum phase nonlinear systems using output feedback
    Mahmoud, NA
    Khalil, HK
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (10) : 1402 - 1412