A class of binary cyclic codes with five weights

被引:0
作者
ChunLei Li
XiangYong Zeng
Lei Hu
机构
[1] Hubei University,Faculty of Mathematics and Computer Science
[2] Graduate School of Chinese Academy of Sciences,The State Key Laboratory of Information Security
来源
Science China Mathematics | 2010年 / 53卷
关键词
cyclic code; Niho exponent; exponential sum; Pless power moment identity; weight distribution; 94A60; 94B15; 06E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the dual code of the binary cyclic code of length 2n − 1 with three zeros α, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha ^{t_1 } $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha ^{t_2 } $$\end{document} is proven to have five nonzero Hamming weights in the case that n ⩾ 4 is even and t1 = 2n/2 + 1, t2 = 2n−1 − 2n/2−1 + 1 or 2n/2 + 3, where α is a primitive element of the finite field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{F}_{2^n } $$\end{document}. The dual code is a divisible code of level n/2 −1, and its weight distribution is also completely determined. When n = 4, the dual code satisfies Ward’s bound.
引用
收藏
页码:3279 / 3286
页数:7
相关论文
共 50 条
  • [21] On the weight distributions of a class of cyclic codes
    Liu, Hongwei
    Wang, Xiaoqiang
    Zheng, Dabin
    DISCRETE MATHEMATICS, 2018, 341 (03) : 759 - 771
  • [22] On the covering radii of a class of binary primitive cyclic codes
    Tutdere, Seher
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (01): : 20 - 26
  • [23] SOME NEW CLASSES OF CYCLIC CODES WITH THREE OR SIX WEIGHTS
    Xia, Yongbo
    Helleseth, Tor
    Li, Chunlei
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2015, 9 (01) : 23 - 36
  • [24] Cyclic codes with few weights and Niho exponents
    Charpin, P
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2004, 108 (02) : 247 - 259
  • [25] The weight distributions of two classes of binary cyclic codes
    Wang, Xiaoqiang
    Zheng, Dabin
    Hu, Lei
    Zeng, Xiangyong
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 34 : 192 - 207
  • [26] Binary Linear Codes With Two Weights
    Wang, Qiuyan
    Ding, Kelan
    Xue, Rui
    IEEE COMMUNICATIONS LETTERS, 2015, 19 (07) : 1097 - 1100
  • [27] Hamming weights in irreducible cyclic codes
    Ding, Cunsheng
    Yang, Jing
    DISCRETE MATHEMATICS, 2013, 313 (04) : 434 - 446
  • [28] Binary Linear Codes With Few Weights
    Qi, Yanfeng
    Tang, Chunming
    Huang, Dongmei
    IEEE COMMUNICATIONS LETTERS, 2016, 20 (02) : 208 - 211
  • [29] The weight distribution of a class of p-ary cyclic codes
    Zeng, Xiangyong
    Hu, Lei
    Jiang, Wenfeng
    Yue, Qin
    Cao, Xiwang
    FINITE FIELDS AND THEIR APPLICATIONS, 2010, 16 (01) : 56 - 73
  • [30] A class of linear codes with a few weights
    Can Xiang
    Chunming Tang
    Keqin Feng
    Cryptography and Communications, 2017, 9 : 93 - 116