Stochastic dynamics and hierarchy for the Boltzmann equation with arbitrary differential scattering cross section

被引:0
作者
Lampis M. [1 ]
Petrina D.Ya. [2 ]
机构
[1] Dipartimento di Matematica, Politecnico di Milano, Milan
[2] Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv
关键词
Correlation Function; Boltzmann Equation; Momentum Space; Lower Dimension; Point Particle;
D O I
10.1007/s11253-005-0160-4
中图分类号
学科分类号
摘要
The stochastic dynamics for point particles that corresponds to the Boltzmann equation with arbitrary differential scattering cross section is constructed. We derive the stochastic Boltzmann hierarchy the solutions of which outside the hyperplanes of lower dimension where the point particles interact are equal to the product of one-particle correlation functions, provided that the initial correlation functions are products of one-particle correlation functions. A one-particle correlation function satisfies the Boltzmann equation. The Kac dynamics in the momentum space is obtained. © 2005 Springer Science+Business Media, Inc.
引用
收藏
页码:1932 / 1960
页数:28
相关论文
共 13 条
  • [1] Petrina D.Ya., Petrina K.D., Stochastic dynamics and Boltzmann hierarchy. I, II, III, Ukr. Mat. Zh., 50, 2-4, (1998)
  • [2] Lampis M., Petrina D.Ya., Petrina K.D., Stochastic dynamics as a limit of Hamiltonian dynamics of hard spheres, Ukr. Mat. Zh., 51, 5, pp. 614-635, (1999)
  • [3] Petrina D.Ya., Methods of derivation of the stochastic Boltzmann hierarchy, Ukr. Mat. Zh., 52, 4, pp. 474-491, (2000)
  • [4] Lampis M., Petrina D.Ya., Spatially homogeneous Boltzmann hierarchy as averaged spatially inhomogeneous stochastic Boltzmann hierarchy, Ukr. Mat. Zh., 54, 1, pp. 78-93, (2002)
  • [5] Petrina D.Ya., Gerasimenko V.I., Malyshev P.V., Mathematical Foundations of Classical Statistical Mechanics. Continuous Systems, 2nd Ed., (2002)
  • [6] Cercignani C., On the Boltzmann equation for rigid spheres, Trans. Theory Statist. Phys., 2, 3, pp. 213-295, (1972)
  • [7] Cercignani C., The Boltzmann Equation and Its Applications, (1988)
  • [8] Cercignani C., Gerasimenko V.I., Petrina D.Ya., Many-particle Dynamics and Kinetic Equation, (1997)
  • [9] Cercignani C., Illner R., Pulvirenti M., The Mathematical Theory of Dilute Gases, (1994)
  • [10] Kac M., Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3, (1956)