Some new fixed point theorems for the Meir-Keeler contractions on partial Hausdorff metric spaces

被引:0
作者
Kuo-Ching Jen
Chi-Ming Chen
Li-Cherng Peng
机构
[1] St. John’s University,General Education Center
[2] National Hsinchu University of Education,Department of Applied Mathematics
来源
Journal of Inequalities and Applications | / 2015卷
关键词
fixed point; Meir-Keeler contraction; partial Hausdorff metric space; 47H10; 54C60; 54H25; 55M20;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to study fixed point theorems for a multi-valued mapping concerning with three classes of Meir-Keeler contractions with respect to the partial Hausdorff metric H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{H}$\end{document} in complete partial metric spaces. Our results generalize and improve many recent fixed point theorems for the partial Hausdorff metric in the literature.
引用
收藏
相关论文
共 32 条
[1]  
Banach S(1922)Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales Fundam. Math. 3 133-181
[2]  
Oltra S(2004)Banach’s fixed point theorem for partial metric spaces Rend. Ist. Mat. Univ. Trieste 36 17-26
[3]  
Valero O(2013)Be careful on partial metric fixed point results Topol. Appl. 160 450-454
[4]  
Haghi RH(2011)Fixed points for generalized weakly contractive mappings in partial metric spaces Math. Comput. Model. 54 2923-2927
[5]  
Rezapour S(2012)Fixed point theory for cyclic generalized contractions in partial metric spaces Fixed Point Theory Appl. 2012 1-12
[6]  
Shahzad N(2011)Fixed point theorems for monotone mappings on partial metric spaces Fixed Point Theory Appl. 2011 1673-1681
[7]  
Abdeljawad T(2011)Fixed point results for weakly contractive mappings in ordered partial metric spaces J. Adv. Math. Stud. 4 206-210
[8]  
Agarwal RP(2012)A generalized contraction principle in partial metric spaces Math. Comput. Model. 55 239-244
[9]  
Alghamdi MA(2012)Weak J. Comput. Anal. Appl. 14 475-488
[10]  
Shahzad N(2011)-contraction on partial metric spaces Fixed Point Theory Appl. 2011 3234-3242