Translation-invariant p-adic quasi-Gibbs measures for the Ising–Vannimenus model on a Cayley tree

被引:0
作者
F. M. Mukhamedov
M. Kh. Saburov
O. Kh. Khakimov
机构
[1] International Islamic University Malaysia,Department of Computational and Theoretical Sciences, Faculty of Science
[2] National University of Uzbekistan,Institute of Mathematics
来源
Theoretical and Mathematical Physics | 2016年 / 187卷
关键词
-adic numbers; Ising–Vannimenus model; -adic Gibbs measure; dynamical system; phase transition; Cayley tree;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the p-adic Ising–Vannimenus model on the Cayley tree of order k = 2. This model contains nearest-neighbor and next-nearest-neighbor interactions. We investigate the model using a new approach based on measure theory (in the p-adic sense) and describe all translation-invariant p-adic quasi-Gibbs measures associated with the model. As a consequence, we can prove that a phase transition exists in the model. Here, “phase transition” means that there exist at least two nontrivial p-adic quasi-Gibbs measures such that one is bounded and the other is unbounded. The methods used are inapplicable in the real case.
引用
收藏
页码:583 / 602
页数:19
相关论文
共 53 条
[1]  
Mukhamedov F.(2014)undefined J. Stat. Mech. Theory Exp. 2014 P10031-203
[2]  
Dogan M.(2013)undefined p-Adic Numbers Ultrametric Anal. Appl. 5 194-404
[3]  
Akin H.(2014)undefined Theor. Math. Phys. 179 395-4034
[4]  
Khakimov O. N.(2004)undefined J. Math. Phys. 45 4025-46
[5]  
Khakimov O. N.(2015)undefined Rep. Math. Phys. 75 25-406
[6]  
Khamraev M.(2012)undefined Rep. Math. Phys. 70 385-87
[7]  
Mukhamedov F. M.(2013)undefined Math. Phys. Anal. Geom. 16 49-317
[8]  
Mukhamedov F.(2014)undefined J. Stat. Mech. Theory Exp. 2014 P01007-1279
[9]  
Dogan M.(2014)undefined p-Adic Numbers Ultrametric Anal. Appl. 6 310-17
[10]  
Mukhamedov F.(2013)undefined Theor. Math. Phys. 176 1267-148