Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation

被引:0
|
作者
J. Ridoux
N. Lardjane
L. Monasse
F. Coulouvrat
机构
[1] CEA,CERMICS
[2] DAM,CNRS, Institut Jean Le Rond d’Alembert, UMR 7190, Université Pierre et Marie Curie, Paris 06
[3] DIF,undefined
[4] ENPC,undefined
[5] Sorbonne Universités,undefined
来源
Shock Waves | 2018年 / 28卷
关键词
Shock wave; Geometrical shock dynamics; Kinematic model;
D O I
暂无
中图分类号
学科分类号
摘要
Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A-M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A{-}M$$\end{document} rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine–Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model’s approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A-M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A{-}M$$\end{document} relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.
引用
收藏
页码:401 / 416
页数:15
相关论文
共 50 条
  • [31] Cavitation detection during shock-wave lithotripsy
    Bailey, MR
    Pishchalnikov, YA
    Sapozhnikov, OA
    Cleveland, RO
    McAteer, JA
    Miller, NA
    Pishchalnikova, IV
    Connors, BA
    Crum, LA
    Evan, AP
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2005, 31 (09): : 1245 - 1256
  • [32] Calculating shock-wave processes in bubbly liquids
    Surov, VS
    TECHNICAL PHYSICS, 1998, 43 (11) : 1280 - 1287
  • [33] Synchrotron diagnostics of shock-wave compression of aerogel
    Merzhievsky, L. A.
    Lukianchikov, L. A.
    Pruuel, E. R.
    Ten, K. A.
    Titov, V. M.
    Tolochko, B. P.
    Evdokov, E. V.
    Zhogin, I. L.
    Sheromov, M. A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 575 (1-2): : 121 - 125
  • [34] Shock-Wave Polymorphic Transition in Porous Graphite
    Kinelovskii, S. A.
    TECHNICAL PHYSICS, 2024, 69 (02) : 278 - 285
  • [35] Modeling shock-wave strength near a partially opened diaphragm in a shock tube
    Alves, M. M.
    Johansen, C. T.
    SHOCK WAVES, 2021, 31 (05) : 499 - 508
  • [36] Shock-Wave Structure of Supersonic Jet Flows
    Zapryagaev, Valery
    Kiselev, Nikolay
    Gubanov, Dmitry
    AEROSPACE, 2018, 5 (02)
  • [37] Calculating shock-wave processes in bubbly liquids
    V. S. Surov
    Technical Physics, 1998, 43 : 1280 - 1287
  • [38] Modeling shock-wave strength near a partially opened diaphragm in a shock tube
    M. M. Alves
    C. T. Johansen
    Shock Waves, 2021, 31 : 499 - 508
  • [39] Beyond the limitation of geometrical shock dynamics for diffraction over wedges
    J. Ridoux
    N. Lardjane
    L. Monasse
    F. Coulouvrat
    Shock Waves, 2019, 29 : 833 - 855
  • [40] Effect of wave formation during shock-wave compaction of powders
    Kiselev S.P.
    Kiselev V.P.
    Journal of Applied Mechanics and Technical Physics, 2006, 47 (1) : 99 - 108