Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation

被引:0
|
作者
J. Ridoux
N. Lardjane
L. Monasse
F. Coulouvrat
机构
[1] CEA,CERMICS
[2] DAM,CNRS, Institut Jean Le Rond d’Alembert, UMR 7190, Université Pierre et Marie Curie, Paris 06
[3] DIF,undefined
[4] ENPC,undefined
[5] Sorbonne Universités,undefined
来源
Shock Waves | 2018年 / 28卷
关键词
Shock wave; Geometrical shock dynamics; Kinematic model;
D O I
暂无
中图分类号
学科分类号
摘要
Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A-M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A{-}M$$\end{document} rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine–Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model’s approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A-M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A{-}M$$\end{document} relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.
引用
收藏
页码:401 / 416
页数:15
相关论文
共 50 条
  • [21] The nature of nonequilibrium phenomena in the shock-wave front
    A. V. Drakon
    A. V. Eremin
    S. V. Kulikov
    V. E. Fortov
    Doklady Physics, 2010, 55 : 207 - 210
  • [22] ELECTRICAL BREAKDOWN ASSISTED BY SHOCK-WAVE IN BENZENE
    YAMADA, H
    FUJIWARA, T
    KUSANO, K
    YAMAUCHI, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1993, 32 (7A): : L932 - L935
  • [23] OPTICAL DISTORTION IN THE FIELD OF A LITHOTRIPTER SHOCK-WAVE
    CARNELL, MT
    EMMONY, DC
    APPLIED OPTICS, 1995, 34 (28): : 6465 - 6470
  • [24] An Electrochemical Transducer of Shock-Wave Front Velocity
    G. N. Sankin
    Instruments and Experimental Techniques, 2003, 46 : 123 - 126
  • [25] Shock-wave synthesis of fullerenes from graphite
    D. S. Dolgushin
    V. F. Anisichkin
    E. A. Petrov
    Combustion, Explosion and Shock Waves, 1999, 35 : 439 - 440
  • [26] Experimental study of shock-wave magnetic cumulation
    S. D. Gilev
    Combustion, Explosion, and Shock Waves, 2008, 44 : 218 - 227
  • [27] Experimental study of shock-wave magnetic cumulation
    Gilev, S. D.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2008, 44 (02) : 218 - 227
  • [28] Nanoscale view of shock-wave splitting in diamond
    S. V. Zybin
    M. L. Elert
    C. T. White
    Metallurgical and Materials Transactions A, 2004, 35 : 2647 - 2650
  • [29] Special and extreme triple shock-wave configurations
    Uskov V.N.
    Chernyshov M.V.
    Journal of Applied Mechanics and Technical Physics, 2006, 47 (4) : 492 - 504
  • [30] A Shock-Wave Generator of a Single Cavitation Bubble
    G. N. Sankin
    Instruments and Experimental Techniques, 2003, 46 : 419 - 423