The Structure of Corings: Induction Functors, Maschke-Type Theorem, and Frobenius and Galois-Type Properties

被引:0
作者
Tomasz Brzeziński
机构
[1] University of Wales Swansea,Department of Mathematics
来源
Algebras and Representation Theory | 2002年 / 5卷
关键词
coring; separable functor; entwining structure; Frobenius extension;
D O I
暂无
中图分类号
学科分类号
摘要
Given a ring A and an A-coring C, we study when the forgetful functor from the category of right C-comodules to the category of right A-modules and its right adjoint −⊗AC are separable. We then proceed to study when the induction functor −⊗AC is also the left adjoint of the forgetful functor. This question is closely related to the problem when A→ AHom(C,A) is a Frobenius extension. We introduce the notion of a Galois coring and analyse when the tensor functor over the subring of A fixed under the coaction of C is an equivalence. We also comment on possible dualisation of the notion of a coring.
引用
收藏
页码:389 / 410
页数:21
相关论文
共 42 条
[21]  
Militaru G.(1990)Noncommutative descent and non-Abelian cohomology Comm. Algebra 18 1445-1459
[22]  
Zhu S.(1996)Separable functors revisited Comm. Algebra 24 3797-3825
[23]  
Cipolla M.(1990)Hopf bi-Galois extensions Israel J. Math. 72 167-195
[24]  
del Río A.(1975)Principal homogeneous spaces for arbitrary Hopf algebras Trans. Amer. Math. Soc. 213 391-406
[25]  
Doi Y.(2001)The predual theorem to the Jacobson-Bourbaki theorem J. Algebra 245 123-160
[26]  
Guzman F.(undefined)Weak corings undefined undefined undefined-undefined
[27]  
Hirata K.(undefined)undefined undefined undefined undefined-undefined
[28]  
Sugano K.(undefined)undefined undefined undefined undefined-undefined
[29]  
Koppinen M.(undefined)undefined undefined undefined undefined-undefined
[30]  
Menini C.(undefined)undefined undefined undefined undefined-undefined