Approximation algorithms for general packing problems and their application to the multicast congestion problem

被引:0
|
作者
Klaus Jansen
Hu Zhang
机构
[1] Universität Kiel,Institut für Informatik
[2] McMaster University,Department of Computing and Software
来源
Mathematical Programming | 2008年 / 114卷
关键词
68W25; 68W40; 90C05; 90C25; 68M10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present approximation algorithms based on a Lagrangian decomposition via a logarithmic potential reduction to solve a general packing or min–max resource sharing problem with M non-negative convex constraints on a convex set B. We generalize a method by Grigoriadis et al. to the case with weak approximate block solvers (i.e., with only constant, logarithmic or even worse approximation ratios). Given an accuracy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \in (0,1)$$\end{document}, we show that our algorithm needs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(M(ln M+ \varepsilon^{-2} ln \varepsilon^{-1}))$$\end{document} calls to the block solver, a bound independent of the data and the approximation ratio of the block solver. For small approximation ratios the algorithm needs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(M(ln M + \varepsilon^{-2}))$$\end{document} calls to the block solver. As an application we study the problem of minimizing the maximum edge congestion in a multicast communication network. Interestingly the block problem here is the classical Steiner tree problem that can be solved only approximately. We show how to use approximation algorithms for the Steiner tree problem to solve the multicast congestion problem approximately.
引用
收藏
页码:183 / 206
页数:23
相关论文
共 50 条
  • [1] Approximation algorithms for general packing problems and their application to the multicast congestion problem
    Jansen, Klaus
    Zhang, Hu
    MATHEMATICAL PROGRAMMING, 2008, 114 (01) : 183 - 206
  • [2] Implementation of approximation algorithms for the multicast congestion problem
    Lu, Q
    Zhang, H
    EXPERIMENTAL AND EFFICIENT ALGORITHMS, PROCEEDINGS, 2005, 3503 : 152 - 164
  • [3] Approximation algorithms for general packing problems with modified logarithmic potential function
    Jansen, K
    Zhang, H
    FOUNDATIONS OF INFORMATION TECHNOLOGY IN THE ERA OF NETWORK AND MOBILE COMPUTING, 2002, 96 : 255 - 266
  • [4] Approximation algorithms for general packing problems with modified logarithmic potential function
    Jansen, Klaus
    Zhang, Hu
    IFIP Advances in Information and Communication Technology, 2002, 96 : 255 - 266
  • [5] Approximation Algorithms for Cycle Packing Problems
    Krivelevich, Michael
    Nutov, Zeev
    Yuster, Raphael
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 556 - 561
  • [6] Parameterized approximation algorithms for packing problems
    Zehavi, Meirav
    THEORETICAL COMPUTER SCIENCE, 2016, 648 : 40 - 55
  • [7] Approximation Algorithms for Interdiction Problem with Packing Constraints
    Chen, Lin
    Wu, Xiaoyu
    Zhang, Guochuan
    arXiv, 2022,
  • [8] Approximation Algorithms for Drone Delivery Packing Problem
    Jana, Saswata
    Mandal, Partha Sarathi
    PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND NETWORKING, ICDCN 2023, 2023, : 262 - 269
  • [9] Approximation algorithms for orthogonal packing problems for hypercubes
    Harren, Rolf
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (44) : 4504 - 4532
  • [10] Improved approximation algorithms for the capacitated multicast routing problem
    Cai, ZP
    Lin, GH
    Xue, GL
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2005, 3595 : 136 - 145