Weyl’s Theorem for Functions of Operators and Approximation

被引:1
作者
Chun Guang Li
Sen Zhu
You Ling Feng
机构
[1] Jilin University,Institute of Mathematics
[2] Jilin University,Department of Mathematics
[3] Changchun Taxation College,Department of Applied Mathematics
来源
Integral Equations and Operator Theory | 2010年 / 67卷
关键词
Primary 47A10; 47A53; Secondary 47A60; 47A58; Weyl’s theorem; function of operators; small-compact closure;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} be a complex separable infinite dimensional Hilbert space. In this paper, we characterize those operators T on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} satisfying that Weyl’s theorem holds for f(T) for each function f analytic on some neighborhood of σ(T). Also, it is proved that, given an operator T on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} and ε > 0, there exists a compact operator K with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|K\| < \varepsilon}$$\end{document} such that Weyl’s theorem holds for T + K.
引用
收藏
页码:481 / 497
页数:16
相关论文
共 50 条
[31]   Riesz Idempotent and Weyl’s Theorem for w-hyponormal Operators [J].
Young Min Han ;
Jun Ik Lee ;
Derming Wang .
Integral Equations and Operator Theory, 2005, 53 :51-60
[32]   Riesz idempotent and Weyl's theorem for w-hyponormal operators [J].
Han, YM ;
Lee, JI ;
Wang, DM .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (01) :51-60
[33]   Weyl spectra and Weyl's theorem [J].
Han, YM ;
Lee, WY .
STUDIA MATHEMATICA, 2001, 148 (03) :193-206
[34]   Weyl's theorem for Toeplitz operators with polynomial symbols on the harmonic Bergman space [J].
Wang, Chongchao ;
Zhao, Xianfeng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (02)
[35]   Weyl's theorem and Putnam's inequality for class p-wA(s, t) operators [J].
Rashid M.H.M. ;
Chō M. ;
Prasad T. ;
Tanahashi K. ;
Uchiyama A. .
Acta Scientiarum Mathematicarum, 2018, 84 (3-4) :573-589
[36]   Weyl’s Theorem and Perturbations [J].
Mourad Oudghiri .
Integral Equations and Operator Theory, 2005, 53 :535-545
[37]   A note on Weyl's theorem [J].
Cao, XH ;
Guo, MZ ;
Meng, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (10) :2977-2984
[38]   Weyl's theorem and perturbations [J].
Oudghiri, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (04) :535-545
[39]   Perturbations and Weyl's theorem [J].
Duggal, B. P. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) :2899-2905
[40]   Generalized Weyl’s theorem and spectral continuity for quasi-class (A, k) operators [J].
Fugen Gao ;
Xiaochun Fang .
Acta Scientiarum Mathematicarum, 2012, 78 (1-2) :241-250