Weyl’s Theorem for Functions of Operators and Approximation

被引:1
作者
Chun Guang Li
Sen Zhu
You Ling Feng
机构
[1] Jilin University,Institute of Mathematics
[2] Jilin University,Department of Mathematics
[3] Changchun Taxation College,Department of Applied Mathematics
来源
Integral Equations and Operator Theory | 2010年 / 67卷
关键词
Primary 47A10; 47A53; Secondary 47A60; 47A58; Weyl’s theorem; function of operators; small-compact closure;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} be a complex separable infinite dimensional Hilbert space. In this paper, we characterize those operators T on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} satisfying that Weyl’s theorem holds for f(T) for each function f analytic on some neighborhood of σ(T). Also, it is proved that, given an operator T on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} and ε > 0, there exists a compact operator K with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|K\| < \varepsilon}$$\end{document} such that Weyl’s theorem holds for T + K.
引用
收藏
页码:481 / 497
页数:16
相关论文
共 50 条