Weyl’s Theorem for Functions of Operators and Approximation

被引:1
作者
Chun Guang Li
Sen Zhu
You Ling Feng
机构
[1] Jilin University,Institute of Mathematics
[2] Jilin University,Department of Mathematics
[3] Changchun Taxation College,Department of Applied Mathematics
来源
Integral Equations and Operator Theory | 2010年 / 67卷
关键词
Primary 47A10; 47A53; Secondary 47A60; 47A58; Weyl’s theorem; function of operators; small-compact closure;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} be a complex separable infinite dimensional Hilbert space. In this paper, we characterize those operators T on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} satisfying that Weyl’s theorem holds for f(T) for each function f analytic on some neighborhood of σ(T). Also, it is proved that, given an operator T on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} and ε > 0, there exists a compact operator K with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|K\| < \varepsilon}$$\end{document} such that Weyl’s theorem holds for T + K.
引用
收藏
页码:481 / 497
页数:16
相关论文
共 50 条
  • [1] Weyl's Theorem for Functions of Operators and Approximation
    Li, Chun Guang
    Zhu, Sen
    Feng, You Ling
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 67 (04) : 481 - 497
  • [2] On Weyl's Theorem for Functions of Operators
    Jiong DONG
    Xiao Hong CAO
    Lei DAI
    Acta Mathematica Sinica,English Series, 2019, (08) : 1367 - 1376
  • [3] On Weyl’s Theorem for Functions of Operators
    Jiong Dong
    Xiao Hong Cao
    Lei Dai
    Acta Mathematica Sinica, English Series, 2019, 35 : 1367 - 1376
  • [4] On Weyl's Theorem for Functions of Operators
    Dong, Jiong
    Cao, Xiao Hong
    Dai, Lei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (08) : 1367 - 1376
  • [5] WEYL'S THEOREM AND ITS PERTURBATIONS FOR THE FUNCTIONS OF OPERATORS
    Cao, Xiaohong
    Dong, Jiong
    Liu, Junhui
    OPERATORS AND MATRICES, 2018, 12 (04): : 1145 - 1157
  • [6] Polaroid operators and Weyl's theorem
    Duggal, B
    Harte, R
    Jeon, IH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (05) : 1345 - 1349
  • [7] Weyl's theorem for class A operators
    Uchiyama, A
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (01): : 143 - 150
  • [8] Weyl’s Theorem for Algebraically Paranormal Operators
    Raúl E. Curto
    Young Min Han
    Integral Equations and Operator Theory, 2003, 47 : 307 - 314
  • [9] Analytically class A operators and Weyl's theorem
    Cao, Xiaohong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (02) : 795 - 803
  • [10] Weyl's theorem for analytically hyponormal operators
    Cao, XH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 405 (1-3) : 229 - 238