Global chaotic bat algorithm for feature selection

被引:0
|
作者
Ying Li
Xueting Cui
Jiahao Fan
Tan Wang
机构
[1] Jilin University,College of Computer Science and Technology
[2] Jilin University,Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education
[3] Jilin University,Northeast Asian Research Center
来源
The Journal of Supercomputing | 2022年 / 78卷
关键词
Feature selection; Wrapper feature selection algorithm; Bat algorithm; Classification; Chaotic map;
D O I
暂无
中图分类号
学科分类号
摘要
The wrapper algorithm adopts the performance of the learning algorithm as the evaluation criteria to obtain excellent classification performance. However, the wrapper algorithm is prone to converge prematurely. A global chaotic bat algorithm (GCBA) is put up forward to improve this shortage. First, GCBA applies chaotic map to population initialization to cover the entire solution space. In addition, adaptive learning factors are presented to balance exploration and exploration. The learning factor of local optimal position gradually decreases in the early stage while the learning factor of global optimal position gradually increases in the later stage. Finally, to improve the exploitation, an improved transfer function is proposed, which transfers the continuous space to discrete binary space. GCBA is tested on 14 UCI data sets and 5 gene expression data sets compared with other 6 comparison algorithms. Compared with other algorithms, the results show that GCBA is able to achieve better classification performance.
引用
收藏
页码:18754 / 18776
页数:22
相关论文
共 50 条
  • [11] A novel chaotic salp swarm algorithm for global optimization and feature selection
    Gehad Ismail Sayed
    Ghada Khoriba
    Mohamed H. Haggag
    Applied Intelligence, 2018, 48 : 3462 - 3481
  • [12] Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection
    Sayed, Gehad Ismail
    Tharwat, Alaa
    Hassanien, Aboul Ella
    APPLIED INTELLIGENCE, 2019, 49 (01) : 188 - 205
  • [13] Chaotic Binary Pelican Optimization Algorithm for Feature Selection
    Eluri, Rama Krishna
    Devarakonda, Nagaraju
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2023, 31 (03) : 497 - 530
  • [14] A Chaotic Antlion Optimization Algorithm for Text Feature Selection
    Hongwei Chen
    Xun Zhou
    Dewei Shi
    International Journal of Computational Intelligence Systems, 15
  • [15] Distributed Text Feature Selection Based On Bat Algorithm Optimization
    Chen, Hongwei
    Hou, Qiao
    Han, Lin
    Hu, Thou
    Ye, Zhiwei
    Zeng, Jun
    Yuan, Jiansen
    PROCEEDINGS OF THE 2019 10TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS - TECHNOLOGY AND APPLICATIONS (IDAACS), VOL. 1, 2019, : 75 - 80
  • [16] A binary chaotic horse herd optimization algorithm for feature selection
    Zaimoglu, Esin Ayse
    Yurtay, Nilufer
    Demirci, Huseyin
    Yurtay, Yuksel
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2023, 44
  • [17] A novel approach for text categorization by applying hybrid genetic bat algorithm through feature extraction and feature selection methods
    Eliguzel, Nazmiye
    Cetinkaya, Cihan
    Dereli, Tuerkay
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 202
  • [18] Chaotic bat algorithm
    Gandomi, Amir H.
    Yang, Xin-She
    JOURNAL OF COMPUTATIONAL SCIENCE, 2014, 5 (02) : 224 - 232
  • [19] Chaotic vortex search algorithm: metaheuristic algorithm for feature selection
    Gharehchopogh, Farhad Soleimanian
    Maleki, Isa
    Dizaji, Zahra Asheghi
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (03) : 1777 - 1808
  • [20] A novel chaotic selfish herd optimizer for global optimization and feature selection
    Anand, Priyanka
    Arora, Sankalap
    ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (02) : 1441 - 1486