Regional application of generalized regression neural network in ionosphere spatio-temporal modeling and forecasting

被引:0
|
作者
Seyyed Reza Ghaffari-Razin
Asghar Rastbood
Navid Hooshangi
机构
[1] Arak University of Technology,Department of Geoscience Engineering
[2] University of Tabriz,Faculty of Civil Engineering
来源
GPS Solutions | 2023年 / 27卷
关键词
TEC; GRNN; GIM; GPS; IRI2016;
D O I
暂无
中图分类号
学科分类号
摘要
We propose using the generalized regression neural network (GRNN) method for spatio-temporal modeling of ionosphere total electron content (TEC). The GRNN model uses radial basis functions in the pattern layer. Therefore, the accuracy and convergence speed to the optimal solution of this model are higher compared to the other machine learning models. The efficiency of the new model has been evaluated using observations of 30 global navigation satellite system (GNSS) stations in central Europe at 2015. It should be noted that the training of the GRNN model is done using the latitude and longitude of GNSS station, day of year, hours, AP, KP and DST geomagnetic indices and solar activity index (F10.7). Also, the vertical TEC corresponding to these input parameters is desirable output. The results of the new model have been compared with the results of the artificial neural network, adaptive neuro-fuzzy inference system, support vector regression, ordinary Kriging, global ionosphere map and the international reference ionosphere 2016 (IRI2016) empirical model as well as precise point positioning (PPP) method. The obtained results show that in both high and low geomagnetic and solar activities, the GRNN model has a higher accuracy with respect to the other models. The analysis of the PPP method shows an improvement of 37 mm in the coordinate components using GRNN model. The results show that the GRNN model can be considered as an alternative to global and empirical ionosphere models. The GRNN model is a high-precision regional ionosphere model.
引用
收藏
相关论文
共 50 条
  • [31] Spatio-temporal modeling and analysis of fMRI data using NARX neural network
    Luo, Huaien
    Puthusserypady, Sadasivan
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2006, 16 (02) : 139 - 149
  • [32] Multivariate spatio-temporal modeling of drought prediction using graph neural network
    Yu, Jiaxin
    Ma, Tinghuai
    Jia, Li
    Rong, Huan
    Su, Yuming
    Wahab, Mohamed Magdy Abdel
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (01) : 107 - 124
  • [33] Regional spatio-temporal forecasting of particulate matter using autoencoder based generative adversarial network
    S. Abirami
    P. Chitra
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 1255 - 1276
  • [34] Regional spatio-temporal forecasting of particulate matter using autoencoder based generative adversarial network
    Abirami, S.
    Chitra, P.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (05) : 1255 - 1276
  • [35] A Survey on Spatio-Temporal Graph Neural Networks for Traffic Forecasting
    Zhang, Can
    Lei, Minglong
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 1417 - 1423
  • [36] Hierarchical Spatio-Temporal Graph Neural Networks for Pandemic Forecasting
    Ma, Yihong
    Gerard, Patrick
    Tian, Yijun
    Guo, Zhichun
    Chawla, Nitesh V.
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1481 - 1490
  • [37] Spatio-Temporal Graph Neural Networks for Aggregate Load Forecasting
    Eandi, Simone
    Cini, Andrea
    Lukovic, Slobodan
    Alippi, Cesare
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [38] Short-term load forecasting of regional integrated energy system based on spatio-temporal convolutional graph neural network
    Su, Zhonge
    Zheng, Guoqiang
    Hu, Miaosen
    Kong, Lingrui
    Wang, Guodong
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 232
  • [39] Efficient Spatio-Temporal Graph Neural Networks for Traffic Forecasting
    Lubarsky, Yackov
    Gaissinski, Alexei
    Kisilev, Pavel
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT II, 2023, 676 : 109 - 120
  • [40] Spatio-temporal Model Based on Back Propagation Neural Network for Regional Data in GIS
    Zhu, Jing
    Li, Xiang
    Du, Lin
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2009, 5821 : 366 - 374