A Compound Poisson Convergence Theorem for Sums of m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document}-Dependent Variables

被引:0
|
作者
V. Čekanavičius
P. Vellaisamy
机构
[1] Vilnius University,Department of Mathematics and Informatics
[2] Indian Institute of Technology Bombay,Department of Mathematics
关键词
Poisson distribution; Compound Poisson distribution ; M-dependent variables; Wasserstein norm; Rate of convergence; 60F05; 60F15;
D O I
10.1007/s10959-014-0540-5
中图分类号
学科分类号
摘要
We prove the Simons–Johnson theorem for sums Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document} of m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document}-dependent random variables with exponential weights and limiting compound Poisson distribution CP(s,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CP}(s,\lambda )$$\end{document}. More precisely, we give sufficient conditions for ∑k=0∞ehk|P(Sn=k)-CP(s,λ){k}|→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{k=0}^\infty {\mathrm e}^{hk}\vert P(S_n=k)-\mathrm {CP}(s,\lambda )\{k\}\vert \rightarrow 0$$\end{document} and provide an estimate on the rate of convergence. It is shown that the Simons–Johnson theorem holds for the weighted Wasserstein norm as well. The results are then illustrated for N(n;k1,k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(n;k_1,k_2)$$\end{document} and k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-runs statistics.
引用
收藏
页码:1145 / 1164
页数:19
相关论文
共 33 条