A New Proof of Bartholdi's Theorem

被引:0
作者
Hirobumi Mizuno
Iwao Sato
机构
[1] Meisei University,Department of Electronics and Computer Science
[2] Oyama National College of Technology,undefined
来源
Journal of Algebraic Combinatorics | 2005年 / 22卷
关键词
zeta function; graph; cycle; bump;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new proof of Bartholdi's theorem for the Bartholdi zeta function of a graph.
引用
收藏
页码:259 / 271
页数:12
相关论文
共 21 条
[11]  
Kotani M.(1998)-adic fields J. Combin. Theory Ser. B 74 408-410
[12]  
Sunada T.(1956)Zeta functions of finite graphs J. Indian Math. 20 47-87
[13]  
Lubotzky A.(1996)Ramanujan graphs Adv. Math. 121 124-165
[14]  
Phillips R.(1994)A note on the zeta function of a graph St. Petersburg Math. J. 5 419-484
[15]  
Sarnak P.(undefined)Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series undefined undefined undefined-undefined
[16]  
Northshield S.(undefined)Zeta functions of finite graphs and coverings undefined undefined undefined-undefined
[17]  
Selberg A.(undefined)The Selberg trace formula, Ramanujan graphs and some problems of mathematical physics undefined undefined undefined-undefined
[18]  
Stark H.M.(undefined)undefined undefined undefined undefined-undefined
[19]  
Terras A.A.(undefined)undefined undefined undefined undefined-undefined
[20]  
Venkov A.B.(undefined)undefined undefined undefined undefined-undefined