A New Proof of Bartholdi's Theorem

被引:0
作者
Hirobumi Mizuno
Iwao Sato
机构
[1] Meisei University,Department of Electronics and Computer Science
[2] Oyama National College of Technology,undefined
来源
Journal of Algebraic Combinatorics | 2005年 / 22卷
关键词
zeta function; graph; cycle; bump;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new proof of Bartholdi's theorem for the Bartholdi zeta function of a graph.
引用
收藏
页码:259 / 271
页数:12
相关论文
共 21 条
[1]  
Amitsur S.A.(1980)On the characteristic polynomial of a sum of matrices Linear and Multilinear Algebra 8 177-182
[2]  
Bartholdi L.(1999)Counting paths in graphs Enseign. Math. 45 83-131
[3]  
Bass H.(1992)The Ihara-Selberg zeta function of a tree lattice Internat. J. Math. 3 717-797
[4]  
Bowen R.(1970)Zeta functions of restrictions of the shift transformation Proc. Symp. Pure Math. 14 43-50
[5]  
Lanford O.(1999)A combinatorial proof of Bass's evaluations of the Ihara-Selberg zeta function for graphs Trans. Amer. Math. Soc. 351 2257-2274
[6]  
Foata D.(1990)On the zeta- and Internat. J. Math. 1 381-396
[7]  
Zeilberger D.(1992)-functions of finite graphs Internat. J. Math. 3 809-826
[8]  
Hashimoto K.(1966)Artin-type J. Math. Soc. Japan 18 219-235
[9]  
Hashimoto K.(2000)-functions and the density theorem for prime cycles on finite graphs J. Math. Sci. U. Tokyo 7 7-25
[10]  
Ihara Y.(1988)On discrete subgroups of the two by two projective linear group over Combinatorica 8 261-277