Melatonin suppresses inflammation and blood‒brain barrier disruption in rats with vascular dementia possibly by activating the SIRT1/PGC-1α/PPARγ signaling pathway

被引:0
|
作者
Phakkawat Thangwong
Pranglada Jearjaroen
Chainarong Tocharus
Piyarat Govitrapong
Jiraporn Tocharus
机构
[1] Chiang Mai University,Department of Physiology, Faculty of Medicine
[2] Chiang Mai University,Graduate School
[3] Chiang Mai University,Department of Anatomy, Faculty of Medicine
[4] Chulabhorn Graduate Institute,Functional Food Research Center for Well
[5] Chiang Mai University,being
来源
Inflammopharmacology | 2023年 / 31卷
关键词
Chronic cerebral hypoperfusion; Melatonin; Inflammation; BBB disruption; SIRT1 signaling pathway; Cognitive impairment;
D O I
暂无
中图分类号
学科分类号
摘要
Chronic cerebral hypoxia (CCH) is caused by a reduction in cerebral blood flow, and cognitive impairment has been the predominant feature that occurs after CCH. Recent reports have revealed that melatonin is proficient in neurodegenerative diseases. However, the molecular mechanism by which melatonin affects CCH remains uncertain. In this study, we aimed to explore the role and underlying mechanism of melatonin in inflammation and blood‒brain barrier conditions in rats with CCH. Male Wistar rats were subjected to permanent bilateral common carotid artery occlusion (BCCAO) to establish the VAD model. Rats were randomly divided into four groups: Sham, BCCAO, BCCAO treated with melatonin (10 mg/kg), and BCCAO treated with resveratrol (20 mg/kg). All drugs were administered once daily for 4 weeks. Our results showed that melatonin attenuated cognitive impairment, as demonstrated by the Morris water maze tests. Furthermore, melatonin reduced the activation of inflammation by attenuating the phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha (pIκBα), causing the suppression of proteins related to inflammation and inflammasome formation. Moreover, immunohistochemistry revealed that melatonin reduced glial cell activation and proliferation, which were accompanied by Western blotting results. Additionally, melatonin also promoted the expression of sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor-gamma (PPARγ), causing attenuated blood‒brain barrier (BBB) disruption by increasing tight junction proteins. Taken together, our results prove that melatonin treatment modulated inflammation and BBB disruption and improved cognitive function in VaD rats, partly by activating the SIRT1/PGC-1α/PPARγ signaling pathway.
引用
收藏
页码:1481 / 1493
页数:12
相关论文
共 50 条
  • [1] Melatonin suppresses inflammation and blood-brain barrier disruption in rats with vascular dementia possibly by activating the SIRT1/PGC-1α/PPARγ signaling pathway
    Thangwong, Phakkawat
    Jearjaroen, Pranglada
    Tocharus, Chainarong
    Govitrapong, Piyarat
    Tocharus, Jiraporn
    INFLAMMOPHARMACOLOGY, 2023, 31 (03) : 1481 - 1493
  • [2] Triptolide Improves Cognitive Dysfunction in Rats with Vascular Dementia by Activating the SIRT1/PGC-1α Signaling Pathway
    Yao, Peng
    Li, Yiling
    Yang, Yujun
    Yu, Shuchun
    Chen, Yong
    NEUROCHEMICAL RESEARCH, 2019, 44 (08) : 1977 - 1985
  • [3] PARP-1 and SIRT-1 are Interacted in Diabetic Nephropathy by Activating AMPK/PGC-1α Signaling Pathway
    Zhu, Hengmei
    Fang, Zhi
    Chen, Jiehui
    Yang, Yun
    Gan, Jiacheng
    Luo, Liang
    Zhan, Xiaojiang
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2021, 14 : 355 - 366
  • [4] Sodium butyrate improves renal injury in diabetic nephropathy through AMPK/SIRT1/PGC-1α signaling pathway
    Ye, Kaili
    Zhao, Yanling
    Huang, Wen
    Zhu, Yonglin
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] Melatonin attenuates oxidative stress and inflammation of Muller cells in diabetic retinopathy via activating the Sirt1 pathway
    Tu, Yuanyuan
    Song, E.
    Wang, Zhenzhen
    Ji, Na
    Zhu, Linling
    Wang, Kun
    Sun, Haotian
    Zhang, Yuting
    Zhu, Qiujian
    Liu, Xiaojuan
    Zhu, Manhui
    BIOMEDICINE & PHARMACOTHERAPY, 2021, 137
  • [6] Melatonin Attenuates Diabetic Myocardial Microvascular Injury through Activating the AMPK/SIRT1 Signaling Pathway
    Wang, Bin
    Li, Jinyu
    Bao, Mi
    Chen, Runji
    Li, Haiyan
    Lu, Binger
    Chen, Meixin
    Huang, Danmei
    Zhang, Yanmei
    Gao, Fenfei
    Shi, Ganggang
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2021, 2021
  • [7] Neuroprotection of melatonin on spinal cord injury by activating autophagy and inhibiting apoptosis via SIRT1/AMPK signaling pathway
    Gao, Kai
    Niu, Jianbing
    Dang, Xiaoqian
    BIOTECHNOLOGY LETTERS, 2020, 42 (10) : 2059 - 2069
  • [8] Quercetin Reprograms Immunometabolism of Macrophages via the SIRT1/PGC-1α Signaling Pathway to Ameliorate Lipopolysaccharide-Induced Oxidative Damage
    Peng, Jing
    Yang, Zhen
    Li, Hao
    Hao, Baocheng
    Cui, Dongan
    Shang, Ruofeng
    Lv, Yanan
    Liu, Yu
    Pu, Wanxia
    Zhang, Hongjuan
    He, Jiongjie
    Wang, Xuehong
    Wang, Shengyi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (06)
  • [9] Rhein protects retinal Muller cells from high glucose-induced injury via activating the AMPK/Sirt1/PGC-1α pathway
    Liu, Cong
    Cao, Qian
    Chen, Yueqin
    Chen, Xi
    Zhu, Yujie
    Zhang, Zhonghua
    Wei, Wei
    JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION, 2023, : 62 - 71
  • [10] Weissella confusa Attenuates Cognitive Deficits in Alzheimer’s Disease by Reducing Oxidative Stress Via the SIRT1/PGC-1α Signaling Pathway
    Xinhuang Lv
    Tao Ye
    Wenwen Yang
    Zhangcheng Zhu
    Kun Xiang
    Lu Zhan
    Jing Sun
    Jiaming Liu
    Neurochemical Research, 2025, 50 (3)