Laguerre calculus and Paneitz operator on the Heisenberg group

被引:0
|
作者
Der-Chen Chang
Shu-Cheng Chang
JingZhi Tie
机构
[1] Georgetown University,Department of Mathematics
[2] National Taiwan University,Department of Mathematics
[3] University of Georgia,Department of Mathematics
来源
Science in China Series A: Mathematics | 2009年 / 52卷
关键词
Paneitz operator; Heisenberg group; Laguerre calculus; fundamental solution; heat kernel; spectrum; 35H20; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
Laguerre calculus is a powerful tool for harmonic analysis on the Heisenberg group. Many sub-elliptic partial differential operators can be inverted by Laguerre calculus. In this article, we use Laguerre calculus to find explicit kernels of the fundamental solution for the Paneitz operator and its heat equation. The Paneitz operator which plays an important role in CR geometry can be written as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{P}_\alpha} = {\mathcal{L}_\alpha} \bar {\mathcal{L}_\alpha} = \frac{1} {4}\left[ {\sum\limits_{j = 1}^n {\left( {Z_j \bar Z_j + \bar Z_j Z_j } \right)} } \right]^2 + \alpha ^2 T^2 $$\end{document} Here “Zj”j=1n is an orthonormal basis for the subbundle T(1,0) of the complex tangent bundle Tℂ(Hn) and T is the “missing direction”. The operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{L}_\alpha $$\end{document} is the sub-Laplacian on the Heisenberg group which is sub-elliptic if α does not belong to an exceptional set Λα. We also construct projection operators and relative fundamental solution for the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{L}_\alpha $$\end{document} while α ∈ Λα.
引用
收藏
页码:2549 / 2569
页数:20
相关论文
共 50 条