Förster Energy Transfer in the Vicinity of Two Metallic Nanospheres (Dimer)

被引:0
|
作者
Jorge R. Zurita-Sánchez
Jairo Méndez-Villanueva
机构
[1] Instituto Nacional de Astrofísica,
[2] Óptica y Electrónica,undefined
来源
Plasmonics | 2018年 / 13卷
关键词
Förster energy transfer; Fluorescence resonance energy transfer; Plasmons; Dimer;
D O I
暂无
中图分类号
学科分类号
摘要
We present a detailed theoretical analysis of the Förster energy transfer process when a pair of molecules (donor and acceptor) is located nearby a cluster of two metallic nanospheres (dimer). We consider the case in which plasmonic resonances are within the overlap between the donor emission and acceptor absorption spectra, as well as the case that excludes such resonances from the aforementioned spectral overlap. Moreover, we explore the dependence of the Förster energy transfer rate on different dimer configurations (size and separation of nanospheres) and several dipole orientations of molecules. The dimer perturbs strongly the Förster energy transfer rate when plasmons are excited, donor dipole is oriented along the longitudinal axis of the dimer, and the radii of nanospheres and the sphere-gap distance are on the order of a few nanometers. In case of plasmonic excitation, the Förster energy transfer rate is degraded as the sphere-gap distance and size of the nanoparticles increase due to the dephasing of electronic motion arising from ohmic losses of metal. Also, we study the Förster efficiency influenced by the dimer, finding that the high efficiency region (delimited by the Förster radius curve) is reduced as a consequence of significant enhancement of the direct donor decay rate. Our study could impact applications that involve Förster energy transfer.
引用
收藏
页码:873 / 883
页数:10
相关论文
共 50 条
  • [31] Control of Forster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials
    Tumkur, T. U.
    Kitur, J. K.
    Bonner, C. E.
    Poddubny, A. N.
    Narimanov, E. E.
    Noginov, M. A.
    FARADAY DISCUSSIONS, 2015, 178 : 395 - 412
  • [32] Polymer bulk heterojunction solar cells employing Förster resonance energy transfer
    Huang J.-S.
    Goh T.
    Li X.
    Sfeir M.Y.
    Bielinski E.A.
    Tomasulo S.
    Lee M.L.
    Hazari N.
    Taylor A.D.
    Nature Photonics, 2013, 7 (6) : 479 - 485
  • [33] Optical signatures of Förster-induced energy transfer in organic/TMD heterostructures
    Joshua J. P. Thompson
    Marina Gerhard
    Gregor Witte
    Ermin Malic
    npj 2D Materials and Applications, 7
  • [34] Analysis of Nucleosome Structure in Polyacrylamide Gel by the Förster Resonance Energy Transfer Method
    Chertkov O.V.
    Valieva M.E.
    Malyuchenko N.V.
    Feofanov A.V.
    Moscow University Biological Sciences Bulletin, 2017, 72 (4) : 196 - 200
  • [35] Purcell factors and F?rster-resonance energy transfer in proximity to helical structures
    Farhi, Asaf
    Dogariu, Aristide
    PHYSICAL REVIEW A, 2022, 106 (01)
  • [36] Plasmonic enhancement of Forster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects
    Xie, H. Y.
    Chung, H. Y.
    Leung, P. T.
    Tsai, D. P.
    PHYSICAL REVIEW B, 2009, 80 (15)
  • [37] Quasi-static potential created by an oscillating dipole in the vicinity of two nanospheres (dimer): inversion transformation method
    Zurita-Sanchez, Jorge R.
    Tec-Chim, Adrian I.
    JOURNAL OF OPTICS, 2014, 16 (06)
  • [38] Management of triplet excitons transition: fine regulation of Förster and dexter energy transfer simultaneously
    Wang, Jiaqiang
    Yang, Yujie
    Sun, Xinnan
    Li, Xiaoning
    Zhang, Liyao
    Li, Zhen
    LIGHT-SCIENCE & APPLICATIONS, 2024, 13 (01)
  • [39] Studying DNA–protein interactions with single-molecule Förster resonance energy transfer
    Shazia Farooq
    Carel Fijen
    Johannes Hohlbein
    Protoplasma, 2014, 251 : 317 - 332
  • [40] Analysis of Structure of Elongation Complexes in Polyacrylamide Gel with Förster Resonance Energy Transfer Technique
    Gerasimova N.S.
    Korovina A.N.
    Afonin D.A.
    Shaytan K.V.
    Feofanov A.V.
    Studitsky V.M.
    Biophysics, 2022, 67 (2) : 165 - 170