Multi-nonlinear multi-view locality-preserving projection with similarity learning for random cross-view gait recognition

被引:0
|
作者
Xiaoyun Chen
Yeyuan Kang
Zhiping Chen
机构
[1] Fuzhou University,College of Mathematics and Computer Science
来源
Multimedia Systems | 2020年 / 26卷
关键词
Subspace learning; Multiple kernels learning; Similarity learning; Multiple nonlinear projection; Locally preserving projection;
D O I
暂无
中图分类号
学科分类号
摘要
View variation is one of the greatest challenges in the field of gait recognition. Subspace learning approaches are designed to solve this issue by projecting cross-view features into a common subspace before recognition. However, similarity measures are data-dependent, which results in low accuracy when cross-view gait samples are randomly arranged. Inspired by the recent developments of data-driven similarity learning and multi-nonlinear projection, we propose a new unsupervised projection approach, called multi-nonlinear multi-view locality-preserving projections with similarity learning (M2LPP-SL). The similarity information among cross-view samples can be learned adaptively in our M2LPP-SL. Besides, the complex nonlinear structure of original data can be well preserved through multiple explicit nonlinear projection functions. Nevertheless, its performance is largely affected by the choice of nonlinear projection functions. Considering the excellent ability of kernel trick for capturing nonlinear structure information, we further extend M2LPP-SL into kernel space, and propose its multiple kernel version MKMLPP-SL. As a result, our approaches can capture linear and nonlinear structure more precisely, and also learn similarity information hidden in the multi-view gait dataset. The proposed models can be solved efficiently by alternating direction optimization method. Extensive experimental results over various view combinations on the multi-view gait database CASIA-B have demonstrated the superiority of the proposed algorithms.
引用
收藏
页码:727 / 744
页数:17
相关论文
共 50 条
  • [21] Multi-view representation learning for multi-view action recognition
    Hao, Tong
    Wu, Dan
    Wang, Qian
    Sun, Jin-Sheng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 48 : 453 - 460
  • [22] Cross-View Cross-Scene Multi-View Crowd Counting
    Zhang, Qi
    Lin, Wei
    Chan, Antoni B.
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 557 - 567
  • [23] A Survey of Multi-view Gait Recognition
    Wang K.-J.
    Ding X.-N.
    Xing X.-L.
    Liu M.-C.
    Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (05): : 841 - 852
  • [24] Cross-view graph matching for incomplete multi-view clustering
    Yang, Jing-Hua
    Fu, Le-Le
    Chen, Chuan
    Dai, Hong-Ning
    Zheng, Zibin
    NEUROCOMPUTING, 2023, 515 : 79 - 88
  • [25] Consensus Low-Rank Multi-View Subspace Clustering With Cross-View Diversity Preserving
    Kang, Kehan
    Chen, Chenglizhao
    Peng, Chong
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1512 - 1516
  • [26] Trusted Cross-view Completion for incomplete multi-view classification
    Zhou, Liping
    Chen, Shiyun
    Song, Peihuan
    Zheng, Qinghai
    Yu, Yuanlong
    NEUROCOMPUTING, 2025, 629
  • [27] Coupled Bilinear Discriminant Projection for Cross-View Gait Recognition
    Ben, Xianye
    Gong, Chen
    Zhang, Peng
    Yan, Rui
    Wu, Qiang
    Meng, Weixiao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (03) : 734 - 747
  • [28] Uniform Projection for Multi-View Learning
    Zhang, Zhenyue
    Zhai, Zheng
    Li, Limin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (08) : 1675 - 1689
  • [29] Robust multi-view locality preserving regression embedding
    Jing, Ling
    Li, Yi
    Zhang, Hongjie
    PEERJ COMPUTER SCIENCE, 2024, 10 : 1 - 28
  • [30] Cross-view gait recognition through ensemble learning
    Wang, Xiuhui
    Yan, Wei Qi
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (11): : 7275 - 7287