Characterization of Hölder and Sobolev spaces via the continuous wavelet transform with rotations

被引:0
|
作者
Jaime Navarro
机构
[1] Universidad Autonoma Metropolitana,Department of Basic Sciences
来源
关键词
Admissible function; Continuous wavelet transform with rotations; Hölder and Sobolev spaces; Weak solutions; 42C40; 47A52; 47A67;
D O I
暂无
中图分类号
学科分类号
摘要
The continuous wavelet transform with rotations in higher dimensions is used to characterize the Hölder and Sobolev spaces for functions f∈L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in L^2({\mathbb {R}}^n)$$\end{document}. Besides we establish the relationship between Hölder continuity and the decay of the continuous wavelet transform with rotations, as well as for the Sobolev spaces.
引用
收藏
相关论文
共 50 条
  • [31] Characterization of nonhomogeneous dual wavelet frames in Sobolev spaces
    Zhang, Jian-Ping
    Chang, Qiang-Qiang
    SCIENCEASIA, 2022, 48 (01): : 101 - 106
  • [32] A characterization of nonhomogeneous wavelet dual frames in Sobolev spaces
    Zhang, Jian-Ping
    Li, Yun-Zhang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [33] On the extension of Hölder maps with values in spaces of continuous functions
    Gilles Lancien
    Beata Randrianantoanina
    Israel Journal of Mathematics, 2005, 147 : 75 - 92
  • [34] On the Compactness of the Hypercomplex Commutator in Hölder Continuous Functions Spaces
    Ricardo Abreu-Blaya
    Juan Bory-Reyes
    Jean-Marie Vilaire
    Complex Analysis and Operator Theory, 2010, 4 : 133 - 143
  • [35] Generalized Riesz Potential Spaces and their Characterization via Wavelet-Type Transform
    Aliev, Ilham A.
    Saglik, Esra
    FILOMAT, 2016, 30 (10) : 2809 - 2823
  • [36] Continuous wavelet transform on Triebel-Lizorkin spaces
    Baison-Olmo, Antonio Luis
    Cruz-Barriguete, Victor Alberto
    Navarro, Jaime
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (08) : 3159 - 3170
  • [37] Fractional Continuous Wavelet Transform on Some Function Spaces
    Prasad, Akhilesh
    Kumar, Praveen
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2016, 86 (01) : 57 - 64
  • [38] Fractional Continuous Wavelet Transform on Some Function Spaces
    Akhilesh Prasad
    Praveen Kumar
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2016, 86 : 57 - 64
  • [39] Ray Hölder-continuity for fractional Sobolev spaces in infinite dimensions and applications
    Jiagang Ren
    Michael Röckner
    Probability Theory and Related Fields, 2000, 117 : 201 - 220
  • [40] H-Distributions via Sobolev Spaces
    Aleksic, J.
    Pilipovic, S.
    Vojnovic, I.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3499 - 3512