A new regularized least squares support vector regression for gene selection

被引:0
作者
Pei-Chun Chen
Su-Yun Huang
Wei J Chen
Chuhsing K Hsiao
机构
[1] National Taiwan University,Bioinformatics and Biostatistics Core Laboratory
[2] Academia Sinica,Institute of Statistical Science
[3] National Taiwan University,Department of Public Health
[4] National Taiwan University,Institute of Epidemiology
来源
BMC Bioinformatics | / 10卷
关键词
Support Vector Machine; Acute Myeloid Leukemia; Acute Lymphoblastic Leukemia; Support Vector Regression; Gene Selection;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 144 条
  • [1] Golub TR(1999)Molecular classification of cancer: class discovery and class prediction by gene expression monitoring Science 286 531-537
  • [2] Slonim DK(2000)Knowledge-based analysis of microarray gene expression data by using support vector machines Proc Natl Acad Sci U S A 97 262-267
  • [3] Tamayo P(2002)Tumor classification by partial least squares using microarray gene expression data Bioinformatics 18 39-50
  • [4] Huard C(2002)Comparison of discrimination methods for the classification of tumors using gene expression data Journal of the American Statistical Association 97 77-87
  • [5] Gaasenbeek M(2005)An entropy-based gene selection method for cancer classification using microarray data BMC Bioinformatics 6 76-2517
  • [6] Mesirov JP(2006)A stable gene selection in microarray data analysis BMC Bioinformatics 7 228-292
  • [7] Coller H(2007)A review of feature selection techniques in bioinformatics Bioinformatics 23 2507-2404
  • [8] Loh ML(1996)Toward optimal feature selection Proceedings of the Thirteenth International Conference on Machine Learning 96 284-1224
  • [9] Downing JR(2006)Selecting features in microarray classification using ROC curves Pattern Recognition 39 2393-1243
  • [10] Caligiuri MA(2004)Efficient feature selection via analysis of relevance and redundancy Journal of Machine Learning Research 5 1205-422