Generalized Lebesgue points for Sobolev functions

被引:0
|
作者
Nijjwal Karak
机构
[1] University of Jyväskylä,Department of Mathematics and Statistics
来源
Czechoslovak Mathematical Journal | 2017年 / 67卷
关键词
Sobolev space; metric measure space; median; generalized Lebesgue point; 46E35; 28A78;
D O I
暂无
中图分类号
学科分类号
摘要
In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point x in a metric measure space (X, d, μ) is called a generalized Lebesgue point of a measurable function f if the medians of f over the balls B(x, r) converge to f(x) when r converges to 0. We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function. We show that a function f ∈ Ms,p(X), 0 < s ≤ 1, 0 < p < 1, where X is a doubling metric measure space, has generalized Lebesgue points outside a set of Hh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}^h$$\end{document}-Hausdorff measure zero for a suitable gauge function h.
引用
收藏
页码:143 / 150
页数:7
相关论文
共 50 条
  • [1] Generalized Lebesgue points for Sobolev functions
    Karak, Nijjwal
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (01) : 143 - 150
  • [2] LEBESGUE POINTS FOR ORLICZ-SOBOLEV FUNCTIONS ON METRIC MEASURE SPACES
    Mocanu, Marcelina
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2011, 57 : 175 - 186
  • [3] Fine properties of functions from Hajłasz–Sobolev classes Mαp, p > 0, I. Lebesgue points
    S. A. Bondarev
    V. G. Krotov
    Journal of Contemporary Mathematical Analysis, 2016, 51 : 282 - 295
  • [4] Fine properties of functions from Hajasz-Sobolev classes Mαp, p &gt; 0, I. Lebesgue points
    Bondarev, S. A.
    Krotov, V. G.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2016, 51 (06): : 282 - 295
  • [5] Differentiability points of functions in weighted Sobolev spaces
    Tyulenev, A. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 283 (01) : 250 - 259
  • [6] Differentiability points of functions in weighted Sobolev spaces
    A. I. Tyulenev
    Proceedings of the Steklov Institute of Mathematics, 2013, 283 : 250 - 259
  • [7] Approximation of Functions by Fourier - Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces
    Magomed-Kasumov, M. G.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2014, 14 (03): : 295 - 304
  • [8] Nonlinear parabolic inequalities in Lebesgue-Sobolev spaces with variable exponent
    Bennouna J.
    El hamdaoui B.
    Mekkour M.
    Redwane H.
    Ricerche di Matematica, 2016, 65 (1) : 93 - 125
  • [9] Compactness, interpolation inequalities for small Lebesgue-Sobolev spaces and applications
    A. Fiorenza
    J. M. Rakotoson
    Calculus of Variations and Partial Differential Equations, 2006, 25 : 187 - 203
  • [10] THE CONTINUITY OF SOBOLEV FUNCTIONS ON THE HYPERPLANES
    Romanov, A. S.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : 832 - 841