Finite element approximation of invariant manifolds by the parameterization method

被引:2
作者
Gonzalez, Jorge [1 ]
James, J. D. Mireles [2 ]
Tuncer, Necibe [2 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA USA
[2] Florida Atlantic Univ, Dept Math Sci, Boca Raton, FL 33431 USA
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2022年 / 3卷 / 06期
基金
美国国家科学基金会;
关键词
Parabolic partial differential equations; Unstable manifold; Finite element analysis; Formal Taylor series; QUASI-PERIODIC MAPS; DELAY-DIFFERENTIAL EQUATIONS; NUMERICAL VERIFICATION; BOUNDARY-CONDITIONS; UNSTABLE MANIFOLDS; CONNECTING ORBITS; ERROR-BOUNDS; TORI; COMPUTATION; EXISTENCE;
D O I
10.1007/s42985-022-00214-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We combine the parameterization method for invariant manifolds with the finite element method for elliptic PDEs, to obtain a new computational framework for high order approximation of invariant manifolds attached to unstable equilibrium solutions of nonlinear parabolic PDEs. The parameterization method provides an infinitesimal invariance equation for the invariant manifold, which we solve via a power series ansatz. A power matching argument leads to a recursive systems of linear elliptic PDEs-the so called homological equations-whose solutions are the power series coefficients of the parameterization. The homological equations are solved recursively to any desired order N using finite element approximation. The end result is an N-th order polynomial approximation of a chart map of the manifold, with coefficients in an appropriate finite element space. We implement the method for a variety of example problems having both polynomial and non-polynomial nonlinearities, on non-convex two dimensional polygonal domains (not necessary simply connected), for equilibrium solutions with Morse indices one and two. We implement a-posteriori error indicators which provide numerical evidence in support of the claim that the manifolds are computed accurately.
引用
收藏
页数:38
相关论文
共 59 条
[1]  
Aziz, 1972, MATH FDN FINITE ELEM, P1
[2]   Parameterization Method for Unstable Manifolds of Standing Waves on the Line [J].
Barker, Blake ;
James, Jason Mireles ;
Morgan, Jalen .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (03) :1758-1797
[3]  
BLAIR JJ, 1976, MATH COMPUT, V30, P250, DOI 10.1090/S0025-5718-1976-0398123-3
[4]   Computation of maximal local (un)stable manifold patches by the parameterization method [J].
Breden, Maxime ;
Lessard, Jean-Philippe ;
James, Jason D. Mireles .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (01) :340-367
[5]   Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof [J].
Breuer, B ;
McKenna, PJ ;
Plum, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 195 (01) :243-269
[6]   Explicit backbone curves from spectral submanifolds of forced-damped nonlinear mechanical systems [J].
Breunung, Thomas ;
Haller, George .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2213)
[7]   Relative periodic orbits form the backbone of turbulent pipe flow [J].
Budanur, N. B. ;
Short, K. Y. ;
Farazmand, M. ;
Willis, A. P. ;
Cvitanovic, P. .
JOURNAL OF FLUID MECHANICS, 2017, 833 :274-301
[8]   Unstable Manifolds of Relative Periodic Orbits in the Symmetry-Reduced State Space of the Kuramoto-Sivashinsky System [J].
Budanur, Nazmi Burak ;
Cvitanovic, Predrag .
JOURNAL OF STATISTICAL PHYSICS, 2017, 167 (3-4) :636-655
[9]   Using spectral submanifolds for optimal mode selection in nonlinear model reduction [J].
Buza, Gergely ;
Jain, Shobhit ;
Haller, George .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2246)
[10]   The parameterization method for invariant manifolds II: Regularity with respect to parameters [J].
Cabre, X ;
Fontich, E ;
De la Llave, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :329-360